Все о бизнесе

В сочетании со свободной прокаткой (по свободным размерам) это позволило повысить гибкость производственного процесса. Внедрение непрерывного литья балочных заготовок с размерами, близкими к размерам готового профиля, внесло заметные изменения в процесс производства крупносортного проката. Число проходов при прокатке уменьшилось, прокатные станы снизили свои габариты, процесс прокатки упростился, его экономические показатели улучшились, а энергопотребление сократилось. Кроме того, при прокатке рельсов и балок такие мероприятия, как контроль температурного режима и охлаждение профилей, а при прокатке рельсов также и возможность их упрочнения в линии стана, привели к повышению качества продукции.

Комбинированные мелкосортно-проволочные прокатные станы

На протяжении последних 25 лет максимальная скорость проката на выходе из станов для прокатки катанки возросла с 80 м/с до 120 м/с в результате совершенствования технологии, стимулированного требованиями увеличения производительности. Важнейшим шагом на этом пути, сопровождаемым повышением призводственной гибкости и размерной точности проката, стало внедрение процесса термомеханической прокатки.

Кроме того, масса бунтов катанки увеличилась до 2 т и более. Еще одним направлением совершенствования процесса прокатки катанки было расширение использования непрерывнолитых заготовок. Так как, исходя из металлургических соображений, желательно использовать заготовки максимального поперечного сечения, то даже при минимальной скорости на входе прокатного стана в этом случае требуется повысить скорость на выходе.

Совершенствование процесса за последние 25 лет позволило проводить охлаждение отдельных ниток проката в линии стана и реализовать термомеханическую прокатку катанки, а в результате получать продукцию, более ориентированную на требования заказчиков, т. е. достигать и контролировать требуемые механические свойства продукции уже на стадии горячей прокатки.

Тенденции современного рынка, особенно, рынка высококачественных сталей, проявляются в уменьшении спектра размеров готовой продукции в сортаменте стана и в большем разнообразии марок стали. Для соответствия этим тенденциям необходимо применять различные стратегии прокатки. Производительность прокатного стана в значительной степени зависит от продолжительности процесса переналадки, обусловленного переходом на прокатку другого готового размера или при изменении марки прокатываемой стали.

Мультилинейная технология прокатки. Данная технология, применяемая с целью повышения производительности и производственной гибкости станов для прокатки высококачественной катанки, позволяет использовать стандартизованную калибровку валков, вплоть до чистовых блоков (рис. 1). Это исключает простои обжимных клетей, клетей промежуточной группы и чистовых блоков мелкосортнопроволочного стана, наблюдаемые в традиционных цехах при переналадке стана, связанной с переходом на прокатку другого размера.

Рис. 1. Мультилинейная технология прокатки с использованием петлевого устройства: варианты прокатки на мелкосортно-проволочном стане фирмы Acominas, Бразилия

Основой концепции является комбинация из петлевого устройства, восьмиклетевой блочной группы и блока FRS (FlexibleReducingandSizing) с четырьмя клетями и устройством для быстрой перевалки (рис. 2).

Рис. 2. Блок FRS

Устройство для быстрой перевалки блока FRS позволяет выполнить переход на прокатку другого размера за 5 мин. Так как после перевалки для настройки требуется минимальное время, можно составить гибкую программу прокатки продукции разных размеров из различных марок стали.

Новая концепция прокатного стана обеспечивает также возможность перехода от традиционной прокатки к термомеханической путем простого нажатия кнопки на пульте управления. Выбор маршрута прокатки и направление прокатываемого металла по маршруту, оборудованному выдвижными устройствами для охлаждения и выравнивания температуры (см. рис. 1), позволяет перейти на другой размер проката или другую марку стали в соответствии с принятой стратегией прокатки без вмешательства операторов и без какой-либо настройки оборудования вручную. Эта концепция предполагает также значительное сокращение простоев оборудования .

Общую концепцию дополняет технологическая система контролируемого охлаждения ССТ (Controlled Cooling Technology), которая позволяет моделировать температурные условия прокатки, формирование микроструктуры и требуемые механические свойства. Только после завершения моделирования начинают реальный процесс прокатки с регулированием его параметров в линии стана и автоматическим регулированием режима охлаждения в секциях холодильников .

Для выполнения требований, связанных с ужесточением допусков на размеры горячекатаных профилей и катанки, отказались от трех- и четырехниточной прокатки и вернулись к прокатным станам максимум с двумя нитками, которые разделяются на чистовые однониточные линии как можно раньше по ходу процесса.

В последние несколько лет отмечено также более широкое использование прецизионных систем прокатки с целью получения еще более жестких допусков на размеры сортового проката и катанки.

Гидравлические системы регулирования размеров поперечного сечения проката. На сортовых станах применяют гидравлические системы регулирования размеров, например систему автоматизированного контроля ASC (Automatic Size Control), разработанную в дополнение к механическим системам прецизионного контроля размеров. Эти системы (рис. 3) используют только две клети в станах с чередующимися вертикальными и горизонтальными клетями и позволяют прокатывать весь сортамент продукции (круглые, плоские, квадратные, шестигранные и угловые профили) с допусками, соответствующими 1/4 стандарта DIN 1013.

Рис. 3. Прецизионная система ASC регулирования размеров сортового проката

Обе клети снабжены гидравлическими нажимными устройствами и обеспечивают полностью автоматизированный контроль с использованием мониторов. Регулирование распространяется на всю длину прокатываемой продукции. Специальное измерительное устройство, размещенное между клетями, обеспечивает прокатку без натяжения. Для перехода на другой размер достаточно выдвинуть из линии стана только кассеты с валками и проводками и заменить их в течение 5 мин на другие, используя устройство быстрой перевалки. Регулирование зазора между валками полностью автоматизировано. На участке подготовки валков заменяют только бочки валков и проводки.

Технология прокатки в трехвалковых клетях

Данную технологию начали применять в промышленных масштабах при прокатке сортовых профилей в конце 1970-х годов и затем постоянно совершенствовали .

Особенностью этой технологии является сочетание обжимных и калибровочных проходов в одном блоке клетей (в чистовом блоке при прокатке прутков и в черновом блоке при производстве катанки). Этот блок называется RSB (Reducing and Sizing Block). В соответствии с технологией была внедрена прокатка со свободными размерами, что позволило получать широкий сортамент размеров готовой продукции с довольно жесткими допусками, используя единую калибровку валков, только посредством регулирования положения валков. С одной системой чистовых калибров блок RSB дает возможность получать продукцию с размерной точностью, укладывающейся в допуски 1/4 стандарта DIN 1013 (рис. 4) .

Рис. 4. Пятиклетевой блок RSB (370 мм)

Бесконечная прокатка

Бесконечный процесс ECR (Endless Casting Rolling) (рис. 5), объединяет в одной производственной линии процессы непрерывного литья и прокатки благодаря использованию туннельной печи. В результате интеграции термического оборудования в единый производственный комплекс длительность технологического процесса от жидкой стали до готовой продукции не превышает 4 ч. Процесс ECR можно использовать на станах для прокатки заготовок и фасонных профилей, а также на станах для прокатки сорта и катанки. Линия ECR включает машину непрерывного литья, печь с роликовым подом, прокатный стан с черновой, промежуточной и чистовой группами клетей, холодильник, участок термической обработки, оборудование для резки, контроля качества поверхности, упаковки (формирования и обвязки пакетов).

Рис. 5. Бесконечный процесс литья и прокатки длинномерных профилей (ECR)

В печи с роликовым подом происходит выравнивание температуры металла и нагрев его до температуры прокатки. Кроме того, печь выступает в роли буферного оборудования в случае нарушения работы прокатного стана.

Линия прокатки оборудована бесстанинными клетями и гидравлическим устройством для быстрой перевалки, позволяющим полностью автоматизировать эту операцию. Изменение формы или размеров прокатываемой продукции может быть выполнено за несколько минут. Компьютеризованная управляющая система высшего уровня предварительно рассчитывает и задает номинальные параметры процесса прокатки. На выходных сторонах промежуточных и чистовых групп установлены триангуляционные лазерные датчики, которые измеряют форму и размеры проката. Результаты измерений поступают на монитор системы управления работой стана для расчета корректирующих воздействий на параметры процесса. Компьютеризованная управляющая система высшего уровня накапливает архив производственной информации с целью получения продукции гарантированного качества.

На выходе производственной линии располагается оборудование для термической обработки в потоке стана, для горячей и холодной правки, а также для смотки в бунты. Работой всей линии (от литейного агрегата до термообработки и отделки) управляет автоматизированная система.

Первый агрегат ECR для бесконечной прокатки длинномерной продукции из специальных сталей был введен в действие в 2000 г. .

«Ноу-хау» и оборудование, использованные на агрегате бесконечной прокатки, послужили основой создания сортовых станов с высокой производительностью и повышенным выходом годного. На агрегате EBROS (Endless Bar Rolling System – бесконечная прокатка сортовых профилей) нагретые заготовки соединяют стыковой сваркой. После удаления грата со сварного шва «бесконечная» заготовка поступает в клети прокатного стана. Так как рабочий цикл исключает время холостых простоев и появление обрези, то производительность агрегата повышается на 10-15 %, а выход годного возрастает на 2-3 % .

Станы для производства сортового проката

Как и при производстве катанки, на сортовых прокатных станах в настоящее время применяют только непрерывнолитую заготовку. Исходя из соображений размерной точности проката, при прокатке сортовых профилей придерживаются тенденции отказа от многониточных станов. Подавляющее большинство современных сортовых станов спроектированы и работают как однониточные, с чередованием горизонтальных и вертикальных клетей.

Чтобы обеспечить высокую производительность при прокатке арматурных профилей и соблюдение требуемых жестких допусков на размеры сортового проката из высококачественных и коррозионностойких сталей, прокатку этих видов металлопродукции осуществляют в настоящее время раздельно. Как и при производстве катанки, в производство сортового проката за последние 25 лет внедрены технологические прокатки с контролируемой температурой и термомеханическая прокатка. В настоящее время моталки Гаррета могут сматывать в бунты готовые профили диаметром до 70 мм.

Чтобы избежать возникновения «узких мест» в производственном процессе, при производстве профилей как в мерных длинах, так и в бунтах отделочные операции выполняют на непрерывных линиях. Для контроля качества и обеспечения его высокого уровня применяют лазерные датчики и токовихревые дефектоскопы, контролирующие размеры и выявляющие поверхностные дефекты горячекатаного проката .

Крупносортные и рельсобалочные станы

Основной задачей крупносортных станов является экономически эффективное производство высококачественной продукции. При производстве крупносортного проката можно придерживаться одной из двух концепций: первой соответствуют непрерывные станы, второй – реверсивные станы с последовательным расположением клетей и чистовой калибрующей клетью. На непрерывных станах может быть применен процесс ECR.

Технология прокатки на реверсивных станах тандем

Данная технология пригодна для производства средних и крупных сортовых профилей, балок высотой до 1000 мм (с шириной полки до 400 мм), уголков, специальных профилей и рельсов.

Реверсивные прокатные станы тандем включают двухвалковую обжимную клеть, группу из трех последовательно установленных идентичных универсальных/двухвалковых клетей, чистовую универсальную/двухвалковую клети и линию отделки с холодильником, правильной машиной, ножницами, штабелерами и упаковочными машинами.

По сравнению с концепцией без отдельно стоящей чистовой клети такая конфигурация стана обладает следующими преимуществами:

  • компактное расположение прокатного оборудования – обжимной клети, промежуточной группы клетей тандем и отдельно стоящей чистовой клети;
  • работающая в непрерывном режиме калибровочная клеть на выходе стана позволяет достигать довольно жестких допусков на размеры проката и значительно снизить износ валков;
  • уменьшается число прокатных клетей и улучшается использование валков и проводок;
  • повышается гибкость применяемой калибровки валков благодаря использованию идентичных, взаимозаменяемых универсальных/двухвалковых клетей;
  • уменьшается номенклатура запасных частей и деталей вследствие идентичной конструкции клетей;
  • бесстанинные клети с гидравлическими нажимными устройствами, которые могут работать под нагрузкой (SCC – Stand Core Concept); в дополнение к стандартной системе автоматического регулирования размеров профиля можно использовать системы регулирования более высокого уровня с выходом на монитор, связанный с установленным в линии стана триангулометрическим лазерным датчиком для измерения профиля проката;
  • короткое время переналадки стана при переходе на прокатку другого размера (20 мин).

При прокатке среднесортных профилей (НЕ 100-260, IPE 100-550, уголки 100-200) можно отметить следующие преимущества прокатки на реверсивных станах тандем по сравнению с традиционной прокаткой на стане без отдельно стоящей калибровочной клети:

  • плановые простои, связанные с перевалкой валков, сокращаются до 40 %;
  • трудоемкость работ и расходы, связанные с перевалкой валков и заменой вводных и выводных проводок, уменьшаются до 20 %;
  • расходы на валки снижаются на 40-60 % в зависимости от готового прокатываемого профиля.

Технология прокатки на универсальных станах и ХН-станах

В соответствии с основными тенденциями на мировом рынке крупносортного проката все ббольшим спросом пользуются сортопрокатные цехи с сокращенным технологическим циклом и низкими производственными расходами. Освоение литья балочных заготовок и сочетание литья заготовок, близких по размерам к готовому профилю, с последующей их прокаткой подготовили предпосылки для объединения процессов литья и прокатки в интегрированную линию для производства широкого сортамента крупносортных профилей, включая пользующиеся большим спросом шпунтовые профили .

При прокатке крупносортных профилей использование современных универсальных клетей в составе реверсивного стана тандем (технология прокатки ХН) стало доминирующим решением (рис. 6). При прокатке в каждом проходе используют все три клети, причем первая универсальная клеть имеет калибровку по схеме Х, а вторая универсальная клеть, выступающая в роли чистовой клети, – калибровку по схеме Н, соответствующую готовому профилю.

Рис. 6. Реверсивная группа стана с последовательным расположением клетей (тандем) для прокатки по схеме ХН

На крупносортных и рельсобалочных станах используют прокатку в реверсивной группе универсальных клетей тандем не только для получения балок и других крупносортных профилей (швеллеров, уголков, профилей для судостроения, специальных профилей и шпунтов), но и как компактную группу клетей для экономичного производства рельсов, предназначенных для работы в условиях тяжелонагруженных и высокоскоростных железных дорог (рис. 7). Эта технология дала возможность производить рельсы с повышенной размерной точностью, улучшенным качеством поверхности при меньшем износе прокатных валков.

Рис. 7. Крупносортный и рельсобалочный стан с линиями термообработки и отделки

Особенности производства рельсов

Рельсы – это прокатная продукция, к которой предъявляют чрезвычайно высокие требования. Спецификации на физические свойства и геометрические параметры, например кривизну, допускаемые отклонения размеров, состояние поверхности, микроструктуру и уровень остаточных напряжений имеют первостепенное значение. Чтобы удовлетворить эти требования, прокатанные рельсы при отделке обрабатывают на машинах горизонтальной и вертикальной правки. Машину горизонтальной правки используют также при производстве крупносортных профилей. В настоящее время имеется возможность производить и отгружать рельсы длиной до 135 м. Рельсы, предназначенные для тяжелых условий эксплуатации, подвергают специальной термической обработке для придания их головкам особой износостойкости по всей длине рельса.

На среднесортных станах (рис. 8) используют как универсальные, так и двухвалковые клети для прокатки стальных строительных профилей – балок, швеллеров, уголков, полосовой стали и специальных профилей.

Рис. 8. Планировка среднесортного стана

Прокатка балок и профилей из балочных заготовок

После того как стало возможным непрерывное литье балочных тонкостенных заготовок, обжатия и усилия при прокатке удалось уменьшить.

Пример, приведенный на рис. 9, показывает, что балочная заготовка со стенкой высотой примерно 810 мм и толщиной 90 мм может быть обжата до размеров, допустимых на входе в универсальную чистовую клеть. Число ребровых калибров зависит от степени деформации балочной заготовки, необходимой для осуществления прокатки в универсальной клети. Возможная схема обжатия балочной заготовки показана на рис. 9 .

Рис. 9. Максимальное и минимальное изменение формы полок и стенки при прокатке балок из балочных заготовок

Показаны также максимальные и минимальные пределы обжатия полки и стенки профиля. Во всех четырех случаях проиллюстрированы коэффициенты вытяжки, при которых получают наиболее крупный балочный профиль (с наибольшей высотой стенки), и обжатия в вертикальных (эджерных) валках для получения профиля минимального размера (с минимальной площадью поперечного сечения).

После освоения прокатки балочных заготовок и внедрения технологии компактного производства балок CBP (CompactBeamProduction) встал вопрос о том, можно ли (и как именно) использовать балочные заготовки при производстве шпунтовых профилей.

Калибровка валков, показанная на рис. 10, представляет процесс прокатки шпунтов Ларсена (корытообразных) на стане с универсальной клетью, предусматривающей два прохода в горизонтальных валках для получения универсального балочного профиля и два прохода в вертикальных (эджерных) валках группы реверсивных клетей тандем для формирования профиля с формой и размерами, требуемыми на входе в чистовую клеть .

Рис. 10. Прокатка шпунтовых профилей (профиль Ларсена) из балочных заготовок

В настоящее время, как было отмечено выше, балочные профили прокатывают из заготовок с использованием технологической схемы ХН. Кроме того, балочные заготовки применяют для производства шпунтов Ларсена и рельсов. Весь сортамент стандартных балочных профилей может быть прокатан всего из четырех размеров непрерывнолитых балочных заготовок. Дальнейшая оптимизация процесса прокатки балок шла по пути приспособления известной технологии компактного производства горячекатаной полосы (CSP) к производству балок. Этот процесс, получивший название CBP, позволил значительно уменьшить число проходов при прокатке.

Кроме того, можно прокатывать рельсы Виньеля (с плоской подошвой) из балочных заготовок, как показано на рис. 11. В этом случае значительно сокращается число проходов по сравнению с классической схемой прокатки рельсов в двухвалковых клетях .

Рис. 11. Калибровка валков для прокатки рельсов Виньеля из балочных заготовок

При производстве рельсов закалка головок и термическая обработка в линии стана стали традиционными операциями для получения продукции требуемого качества .

Гидравлические нажимные системы

Современные заготовочные и крупносортные станы, в состав которых включены универсальные/двухвалковые клети, оборудованы автоматизированными гидравлическими нажимными системами, которые позволяют прокатывать готовую продукцию с очень жесткими допусками. Станина со стороны оператора выполнена перемещаемой и имеет возможность выдвигаться вместе с валками (которые могут иметь различную длину бочки) и проводками (рис. 12). Настройка стана при переходе на прокатку другого размера занимает всего 20 мин, что делает экономически оправданным производство малых партий продукции.

Рис. 12. Компактная универсальная/двухвалковая клеть

С помощью цифровой системы управления технологическим процессом (TSC– TechnologicalControlSystem) (рис. 13) установка валков посредством гидравлических устройств может поддерживаться постоянной по всей длине прокатываемого профиля. Каждый гидравлический цилиндр позиционируют так, чтобы зазоры между горизонтальными и вертикальными валками соответствовали предварительно рассчитанным номинальным значениям. Гидравлическая система регулирования межвалкового зазора (HGC – Hydraulic Gap Control) позволяет также предотвратить разрушение валков и станины при возникновении перегрузок. Кроме того, в процессе прокатки нижний валок позиционируют относительно верхнего валка. Деформация клетей, происходящая под действием различных усилий прокатки, компенсируется в ходе прокатки с помощью системы атоматического регулирования размеров проката (AGC – Automatic Gage Control). Все это позволяет применять воспроизводимые и относительно простые схемы калибровок.

Рис. 13. Система управления технологическим процессом

Холодильник с аэрозольным охлаждением, линия селективного охлаждения и лазерная система измерения профиля

Использование водяного тумана в качестве охлаждающей среды на определенном участке холодильника ускоряет процесс охлаждения и обеспечивает следующие преимущества:

  • конкретное влияние на кривую охлаждения (рис. 14);
  • меньшая площадь холодильника;
  • сокращение капитальных затрат;
  • низкие эксплуатационные расходы;
  • возможность применения модульной системы охлаждения с избирательным включением-выключением секций;
  • повышение производительности холодильников в действующих цехах .

Рис. 14. Сравнение различных методов охлаждения и холодильник с аэрозольным охлаждением

Для равномерного распределения температуры в стальном профиле при прокатке двутавровых балок и рельсов между выходной стороной стана и холодильником устанавливают устройство селективного охлаждения, геометрия которого соответствует форме и размерам профиля. В сочетании с системой управления технологическим процессом такое решение дает возможность охлаждения конкретных участков поперечного сечения прокатанного профиля (рис. 15).

Рис. 15. Селективное охлаждение рельсов и балок

Это не только улучшает прямизну прокатанных профилей на холодильнике, но и снижает остаточные напряжения в металле вследствие более равномерного протекания структурных превращений.

Кроме того, могут быть повышены механические свойства проката. Секции избирательного охлаждения могут быть смонтированы и на холодильниках действующих цехов.

Готовые рельсы, балки и другие профили после прокатки измеряют в горячем состоянии методом светоделения. Лазерный луч, направленный на поверхность измеряемого профиля, отражается и улавливается быстродействующим датчиком с высокой разрешающей способностью. Расстояние до поверхности профиля рассчитывается в зависимости от позиции, в которой отраженный луч улавливается датчиком. На основе результатов измерений может быть очерчен контур измеряемого профиля.

Машины для правки профилей и рельсов

Современные машины CRS валкового типа и компактной компоновки для правки профилей (рис. 16, а) оборудованы девятью двухопорными сборными правильными роликами с фиксированным расположением. Все девять роликов имеют индивидуальные приводы. Гидравлические цилиндры могут регулировать положение роликов под нагрузкой или зазора между ними. По сравнению с традиционным правильным оборудованием такие машины имеют следующие преимущества:

  • равномерное и симметричное приложение нагрузки, а также более благоприятное распределение в профилях остаточных напряжений;
  • компенсация упругого пружинения роликов путем регулирования их положения с помощью гидроцилиндров;
  • гидравлический механизм осевой установки каждого из роликов;
  • сборка правильных роликов с минимальными зазорами и максимальная точность их установки в процессе правки;
  • автоматизированная замена роликов, занимающая не более 20 мин.

Рис. 16. Правильная машина для стальных профилей (а) и рельсов (б), скомпонованная по схеме Н-V

Машины для правки рельсов (рис. 16, б) состоят из горизонтального и вертикального блоков и отличаются повышенной жесткостью конструкции и индивидуальным приводом правильных роликов. В сочетании с машинами для правки рельсов вне линии стана и специальными системами контроля натяжения между правильными роликами эти машины позволяют достигать минимального уровня остаточных напряжений в рельсах, что значительно увеличивает срок их эксплуатации.

Отличительными особенностями машин для правки рельсов являются:

  • беззазорная сборка правильных роликов, втулок и опор на регулируемых валах;
  • монтаж правильных втулок на валах с помощью байонетных колец и гидравлических систем высокого давления;
  • автоматизированная настройка машины при изменении размеров продукции;
  • замена правильных роликов в течение 30 мин.

Перспективы

Возрастающие требования, предъявляемые потребителями длинномерного сортового проката в отношении свойств и точности размеров, а также необходимость внедрения ресурсосберегающих технологий заставили технологов освоить производство готовой продукции непосредственно с прокатного нагрева и без дополнительной термической обработки. В некоторых случаях это обеспечивает достижение таких свойств материала, которые невозможно получить при использовании традиционных процессов термической обработки.

Прогресс в области современной контрольно-измерительной аппаратуры и средств автоматизации, а также совершенствование конструкции прокатных станов позволили добиться высокого уровня автоматизации производственного процесса. Следствием этого стал ряд важных достижений, в том числе увеличение выхода годного, повышение качества продукции и обеспечение более стабильных свойств, возможность мгновенного реагирования на отклонения в ходе технологического процесса, точная настройка прокатного оборудования, снижение брака и надежное документирование всего технологического процесса для обеспечения гарантированного качества продукции.

  • П.-Й. Мок
  • К. Оверхаген
  • У. Стелмахер

На протяжении последних лет при совершенствовании технологии сортовой прокатки основное внимание уделялось получению требуемых свойств сортового проката и катанки непосредственно с прокатного нагрева и возможности дальнейшей обработки проката без предварительной термической обработки. В сочетании со свободной прокаткой (по свободным размерам) это позволило повысить гибкость производственного процесса. Внедрение непрерывного литья балочных заготовок с размерами, близкими к размерам готового профиля, внесло заметные изменения в процесс производства крупносортного проката. Число проходов при прокатке уменьшилось, прокатные станы снизили свои габариты, процесс прокатки упростился, его экономические показатели улучшились, а энергопотребление сократилось. Кроме того, при прокатке рельсов и балок такие мероприятия, как контроль температурного режима и охлаждение профилей, а при прокатке рельсов также и возможность их упрочнения в линии стана, привели к повышению качества продукции.

  • сортовой прокат,
  • мелкосортно-проволочный стан,
  • крупносортный стан,
  • рельсобалочный стан,
  • процесс прокатки,
  • отделка,
  • термическая обработка.
  • Burkhardt, M.; Müller, H.; Ellis, G.: Iron Steel Techn. (2004) Nr. 2, S. 50/55.
  • Brune, E.; Koller, F.; Kruse, M.; Mauk, P.J.; Plociennik, U.: stahl u. eisen 114 (1994) Nr. 11, S. 87/92.
  • Filippini, S.A.; Ammerling, W.J.: Further developments in wire rod and bar production using the 3-roll technology, Proc. AISTech 2008, 5.–8. Mai 2008, Pittsburgh, USA, Vol. 2.
  • Hüllen, P. van; Ammerling, J.: Targets, imple mentation and operating results of the modernization project of a bar mill for engineering steel, Proc. 3. Europ. Rolling Conf., METEC Congress 2003, 16.–20. Juni 2003, Düsseldorf, S. 171/76.
  • Alzetta, F.: Iron Steelmak. 29 (2002) Nr. 7, S. 41/49.
  • Austen, T.; Ogle, D.; Hogg, J.: EBROS – endless bar rolling system, Proc. AISE Annual Convention and Steel Expo 2002, 30. Sept. – 2. Okt. 2002, Nashville, USA, S. 1/24.
  • Knorr, J.S.: BHM – Berg- und Hüttenm. Monatshefte 146 (2001) Nr. 1, S. 2/6.
  • Hensel, A.; Lehnert, W.; Krengel, R.: Der Kalibreur (1996) Nr. 57, S. 37/47.
  • Mauk, J.: Verfahren zum Walzen schwerer Profile – Vergleich und Bewertung aus umformtechnischer Sicht, Proc. 27. Verformungskundliches Kolloquium, 8.–11. März 2008, Planneralm, Österreich, Montanuniversität Leoben, S. 155/80.
  • Engel, G.; Feldmann, H.; Kosak, D.: Der Kalibreur (1987) Nr. 47, S. 3/24.
  • Cygler, M.; Engel, G.; Flemming, G.; Meurer, H.; Schulz, U.: MPT – Metallurgical Plant and Technology Intern. 17 (1994) Nr. 5, S. 60/67.
  • Pfeiler, H.; Köck, N.; Schroder, J.; Maestrutti, L.: MPT – Metallurgical Plant and Technology Intern. 26 (2003) Nr. 6, S. 40/44.
  • Moitzi, H.; Köck, N.; Riedl, A.: Modernste Schienenproduktion – Technologiewechsel an der Schienen walzstraβe, 28. Verformungskundliches Kolloquium, 13. Feb. 2009, Planneralm, Österreich, Montanuniversität Leoben, S. 53/60.
  • Lemke, J.; Kosak, T.: Walzen von Profilen aus Beam Blanks, Freiberger Forschungshefte, Reihe B, Bd. 306, 2000, S. 198/214.

Наблюдается переходна более новый качественный виток развития. Это обусловлено многими факторами: от создания, внедрения и развития прогрессивных технологий, в том числе и в сталеплавильном производстве, до изменения самой концепции в отношении к прокатному производству. Одним из наиболее важных факторов данного развития в прокатном производстве является возникшая возможность осуществлять абсолютный контроль температурно-деформационным процессом при прокатке на станах последнего поколения. Данная тенденция наиболее ярко проявляется на прокатных станах, предназначенных для производства катанки и мелкого сорта. Постараемся оценить, чем это обусловлено, учитывая возможности, которые предоставляет использование новых подходов в технологии прокатки катанки. В процессе горячей прокатки происходит высокотемпературная термомеханическая обработка металла (ТМО). Однако под ТМО, как правило, понимается не только физическая сущность процесса, но и целенаправленное комплексное воз действие на структуру металлического сплава совокупностью операций деформации, нагрева и охлаждения, в результате которых и происходит формирование окончательной структуры металлического сплава, а, следовательно, и его свойств. Существует большое количество разновидностей термомеханической обработки стали. Их можно разделить на следующие группы:

  • Режимы термомеханической обработки, при которых деформация осуществляется в аустенитном состоянии. К этой группе относятся наиболее известные и изученные методы упрочнения: высокотемпературная термомеханическая обработка (ВТМО) и низкотемпературная термомеханическая обработка (НТМО).
  • Термомеханическая обработка с деформацией в ходе превращения переохлажденного аустенита.

Режимы термомеханической обработки, связанные с деформацией, осуществляемой после превращения аустенита в мартенсит или бейнит. Примером такой обработки является метод упрочнения, связанный с деформационным старением мартенсита. Для упрочнения стали могут применяться различные комбинации режимов термомеханической обработки, например ВТМО с НТМО, ВТМО с деформационным старением мартенсита и др. Термомеханическая обработка чаще всего является окончательной операцией при изготовлении деталей. Но она может использоваться и как предварительная операция, которая обеспечивает формирование благоприятной структуры при проведении окончательной термической обработки, включающей закалку на мартенсит и отпуск. Традиционно при рассмотрении задачи достижения требуемых свойств в готовой продукции из металлического сплава используют влияние химических элементов на свойства металла и термическую обработку. При этом формирование структуры при нагреве, а в особенности при прокатке, долгое время оставалось «черным ящиком». А ведь именно эти процессы влияют на формирование структуры в готовой продукции. На практике технологи использовали для получения необходимых механических свойств, в готовом прокате применяли только такие механизмы при изготовлении сталей как легирование и термообработка. В качестве примера приведем недостатки использования традиционных способов изготовления готового проката из рядовых марок сталей. У данного класса сталей структура состоит из феррита с известной незначительной долей перлита. При желании получать менее металлоемкие конструкции и изделия из стали, обладающие повышенной надежностью при низкой себестоимости изготовления, встает проблема повышения прочности проката, полученного в горячекатаном состоянии. Если для увеличения прочности используют только повышение доли перлита путем повышения содержания углерода, то эта возможность ограничена, так как с увеличением прочности благодаря повышению содержания углерода пластичность, вязкость и свариваемость стали резко снижаются, что приводит к отказу от данного проката, так как наряду с прочностью в прокате необходимо также обеспечение вышеперечисленных свойств металла. Изготовление проката из высоколегированных сталей приводит к резкому удорожанию готовой продукции в связи с высокой ценой легирующих элементов и ухудшением технологичности переработки (дополнительная зачистка и т.д.). Дополнительная термообработка после прокатки, такая как закалка+отпуск, позволяет получить повышение прочностных и пластических свойств стали, но этот эффект можно получить только для низколегированных марок сталей. При этом также происходит увеличение себестоимости готовых изделий из стали. Первым шагом использования особого состояния горячекатаного проката, полученного в процессе деформации, явилось использование установок ускоренного охлаждения после прокатки, в особенности применение водяного охлаждения. Использование данной технологии непосредственно в линиях прокатки позволило снизить влияние полного протекания процессов рекристаллизации, ранее формировавших структуру и механические свойства в готовом прокате.

Следующим шагом в повышении механических свойств стало использование так называемого процесса контролируемой прокатки с использованием принципов термомеханической обработки. Рассмотрим более подробно использованием данных принципов в процессе ТМО. В зависимости от того, как проводить прокатку и нагрев в первую очередь зависит эффективность влияния химического состава и термообработки на конечные свойства металлопроката. Химический состав оказывает большое влияние на изменения структуры и в процессе ТМО, и его влияние на механические свойства должно рассматриваться с позиций всех этапов обработки металла: от нагрева до охлаждения. Термическая обработка с прокатного нагрева лишь фиксирует состояние структуры, полученной на прокатном стане, и хотя здесь существует множество вариантов ее проведения с получением различных комплексов свойств, повышение их значений ограничено данной структурой в процессе прокатки. Термическая обработка вне прокатного стана с удорожанием энергоносителей становится все более нецелесообразной. Ряд режимов термомеханической обработки могут обеспечить наряду с высокими прочностными свойствами повышенную пластичность и вязкость. Нередко использование ТМО позволяет получить комплекс механических свойств, который не может быть достигнут способами обычной термической обработки и традиционного легирования. Изменяя условия деформирования при ТМО, можно регулировать плотность и характер распределения дефектов кристаллического строения, что позволяет управлять структурой и свойствами стали в широких пределах. Именно эти причины и явились основанием столь быстрого развития и заинтересованности, производителей металлопродукции процессом ТМО. Необходимо отметить перспективность развития процесса ТМО при производстве катанки. Это обусловлено особенностями производства и геометрическими размерами (высокие скорости деформации и особо малое сечение в отличие от других видов металлопродукции получаемых путем горячей прокатки). Дело в том, что только при прокатке катанки для большого марочного сортамента возможно осуществление и управление процессами горячего наклепа и рекристаллизации, что из-за отсутствия высоких скоростей деформации при производстве других видов проката неосуществимо в линии прокатки, либо возможно при наложении определенных ограничений (ограниченный марочный сортамент,как правило, стали аустенитного класса или низкие температуры прокатки). Это позволяет управлять прочностными свойствами горячего проката, а высокая степень деформации в совокупности с химсоставом и термообработкой пластическими. К особенностям прокатки катанки можно отнести еще один очень важный с позиций термомеханической обработки фактор — время между деформациями может достигать очень малых значений, в особенности в последних клетях, вплоть до 0,0005 с. Для сохранения структуры, полученной в процессе ТМО, большое значение имеет способ осуществления охлаждения после прокатки. При этом возникают две задачи: транспортирование проката к охлаждающему устройству и охлаждение металла по всему сечению для обеспечения равномерности структуры, а, следовательно, и свойств по сечению готового проката. Небольшое поперечное сечение катанки (диаметр до 8 мм) позволит нам рассматривать его как термически тонкое тело.

Таким образом, получив необходимую структуру на прокатном стане, мы можем ее зафиксировать во всем поперечном сечении и по всей длине, что улучшает однородность свойств и качество горячего проката. При необхо димости, изменяя интенсивность охлаждения после прокатки, можно также добиться различной структуры по слоям поперечного сечения и получить определенные свойства. Так как скорость отвода тепла в большем сечении из внутренних слоев ограничена, то сохранить преимущества наведенной структуры в процессе прокатки проблематично, а иногда и вовсе невозможно. При проведении эксперимента на прокатном стане наиболее важным моментом является учет наиболее влияющих на структуру факторов. Для этого необходимо осуществить математическое моделирование процесса прокатки, позволяющее определять значения влияющих на структуру параметров. Для последующей оценки их влияния на структуру могут быть использованы такие уже известные данные как:
- влияние температуры и выдержки в печи на рост зерна в заготовке;
- влияние величины зерна и температуры металла на превращения из аустенита;
- изменение структуры горячедеформированного аустенита при последеформационной выдержке;
- структурообразование при горячей
прокатке.


Для определения влияния параметров прокатки на структуру горячедеформированного металла необходимо создание термокинетической модели проволочного стана, на котором проводится эксперимент. На основании чего, исходя из скорости конца прокатки и промежуточных температур в линии стана, определяются значения: скорости деформации; температуры деформации; время между деформациями. При осуществлении процесса контролируемой прокатки температурный режим является одним из наиболее важных факторов в целенаправленном воздействии на структуру и конечные свойства в производстве катанки. Существует несколько путей непосредственного регулирования температуры раската в процессе прокатки: изменение температуры нагрева, регулирование скоростью прокатки, межклетевое охлаждение и нагрев раската. Чаще всего для воздействия на температуру раската во время прокатки используют два первых рычага воздействия. Для применения межклетевого охлаждения и нагрева необходима установка
дополнительного оборудования. Помимо этого требуется предварительная оценка возможностей охлаждения (при скоростях прокатки выше 30 м/с и межклетевом расстоянии не более 1 м — время для обеспечения необходимого теплосъема ограничено). Также большой задачей является знание влияния температурных полей раската в процессе прокатки для определенного марочного сортамента на структуру металла, в частности
на величину зерна. При использовании управления над температурой прокатки необходимо учитывать, что диапазон возможного регулирования имеет определенные ограничения. От теплового режима зависят энергосиловые параметры прокатного стана, усилия, действующие на валки (шайбы) и другие детали рабочих клетей, точность размеров профиля, форма и качество поверхности готового проката, стойкость прокатных валков, стабильность всего технологического процесса. При этом он непосредственно связан с режимами обжатий, скоростей и натяжений. На большинстве прокатных станах не производится непосредственное измерение температуры промежуточного раската во всей длине стана. Это связано как с дороговизной установки, так и условиями эксплуатации приборов, что зачастую не позволяет точно определить температуру металла, может приводить к поломке измерительной техники при аварийном отклонении металла от линии прокатки. Также при использовании междеформационного охлаждения даже определение температуры поверхности раската не дает точную картину о среднемассовой температуре металла, которая, в свою очередь, является наиболее значащей для оценки вышеуказанных параметров. Температура при прокатке металла распределена по сечению не равномерно, а так как непосредственным измерением это распределение определить не имеется возможности, то целесообразно прибегать к расчету тепловых характеристик. Тепловой режим рассчитывается с учетом теплового баланса, зависящего от всех видов теплообмена, имеющих место при горячей прокатке: потеря тепла теплопроводностью при контакте с шайбами и водяным охлаждением, конвекцией и излучением. Наибольшей проблемой определения теплопереноса при прокатке является установление закономерностей изменения температур в любой точке раската в течение времени от нагрева до получения готовой катанки. Изменение температуры раската во время прокатки связано с протеканием всех видов тепловых процессов: теплопроводностью, конвекцией и излучением. При этом каждый из видов теплопереноса вносит свой вклад, который не всегда удается точно установить. Деформация металла путем прокатки с позиции теплопереноса состоит из большого количества различных этапов (циклов). На каждом таком этапе действуют определенные процессы со свойственными только для данного участка условиями. Результирующий эффект сложного теплопереноса зависит не только от интенсивности конкретных видов переноса, но и от особенностей их взаимодействия (последовательного или параллельного, стационарного или нестационарного). В отличиe от стационарного режима, при котором температурное поле не изменяется во времени, тепловой процесспрокатки характеризуется как нестационарный. При этом температурное поле раската является функцией времени. Нестационарный процесс связан с изменением энтальпии во времени. При этом интенсивность отвода теплоты непостоянна во времени. Решить задачу нестационарной теплопроводности — это значит найти зависимости изменения температуры и количества переданной теплоты во времени для
любой точки тела. Каждый из процессов нестационарного теплообмена описывается системой дифференциальных уравнений. Однако данные уравнения описывают бесчисленное множество процессов теплоотдачи, выведенные из рассмотрения элементарного участка в физическом теле. Чтобы решить конкретную задачу, связанную с изменением температуры металла при прокатке, необходимо на каждом этапе рассмотреть протекающие тепловые и дать полное их математическое описание всех частных особенностей, свойственных для данного случая. Для этого необходимо решать систему дифференциальных уравнений при определении следующих краевых условий:
- Геометрические условия, характеризующие форму и размеры раската.
- Физические условия, характеризующие физические свойства среды и раската.
- Граничные условия, характеризующие особенности протекания процесса
на границах тела.
- Временные условия, характеризующие особенности протекания процесса
во времени.

Решение данной системы уравнений позволит получить описание поля температур раската на любом участке прокатного стана в любой момент времени. Данная задача определения температурных полей по сечению раската в любой момент прокатки была решена для мелкосортнопроволочного стана 300 No3 ОАО «ММК». В качестве примера
приведена диаграмма на рисунке 1 распределения температуры по сечению
промежуточного раската. Использование результатов данной модели позволило оценить существующий температурно-деформационный режим
прокатки, а путем изменения основных факторов прокатки — прогнозировать и получать необходимый режим с позиции формирования необходимой структуры. С целью получения нового уровня свойств на катанке предназначенной для армирования, на ОАО «ММК» на стане 250#2 были проведены исследования с использованием температурно деформационной модели и вновь установленной установки водяного охлаждения. Установка в 2004 году новой линии водяного охлаждения на стане 250#2 (производства НПП «Инжмет») позволила провести экспериментальные исследования с целью получения термомеханически упрочненной арматуры малых диаметров. Получение термомеханически упрочненной арматуры на стане 250No2 заключалась в проведении процесса закалки поверхностного слоя катанки в линии водяного охлаждения, расположенной после чистовой клети No16 в потоке прокатного стана. Далее прокат укладывается моталкой в виде витков на сетчатый транспортер, после чего собирается на виткосборнике в бунты массой до 300 кг. Охлаждение осуществляется с помощью форсунки высокого давления и в последовательно расположенных трубках, на входе и выходе которых охлаждение катанки прерывается отсечными устрой ствами. Длина активной зоны охлаждения зависит от диаметра прокатываемой катанки и может составлять ≈ 7,2 м и ≈9,7 м.
Термомеханическое упрочнение катанки можно условно разделить на три этапа. На первом этапе катанка, выходящая из чистовой клети No16, попадает в линию термоупрочнения, где подвергается интенсивному охлаждению водой. Данный процесс должен обеспечивать охлаждение поверхности катанки со скоростью, превышающей критическую скорость охлаждения, необходимую для получения в поверхностном слое катанки структуры мартенсита. Однако при этом технология процесса термоупрочнения должна обеспечивать такую температуру в центральных слоях катанки, при которой сохраняется аустенитная структура во время охлаждения. Этот процесс можно выделить во второй этап, который позволит при дальнейшем ее охлаждении со скоростью меньшей критической скорости получить в сердцевине катанки феррито-перлитную структуру, что обеспечит высокую пластичность полученной арматуры (рис. 2). На третьем этапе высокая температура центральных слоев катанки после окончания операции интенсивного охлаждения будет способствовать протеканию процесса самоотпуска закаленного поверхностного слоя. Данный процесс, в свою очередь, также позволяет повысить пластичность поверхностного слоя при сохранении его высокой прочности
Металл, расположенный между поверхностным и центральным слоем, имеет промежуточную скорость охлаждения, которая приводит к получению слоя с бейнитной структурой. В результате такого охлаждения получается, что катанка в поперечном сечении представляет собой две зоны в виде кольца: с мартенситной и бейнитной структурой и феррито-перлитной в центральной
части. В результате опытных прокаток на стане 250#2 была получена катанка с указанной структурой (рис. 3).
Исследование структуры шлифов термомеханически упрочненной катанки
показало у полученного проката, как правило, наличие одного или нескольких подкаленных слоев серповидной формы. Это, по видимому, связано с тем, что охлаждение производится только одной форсункой в один цикл охлаждения. В таких условиях при возникновении ситуации «случайного» омывания какой-то одной области проката в единственной камере охлаждения в дальнейшем отсутствует возможность проведения еще нескольких циклов охлаждения, которые позволили бы произвести более равномерное охлаждение катанки по сечению. Дальнейшее охлаждение катанки на сетчатом транспортере без осуществления направленной продувки воздухом также приводит к неравномерному температурному полю как по сечению, так и по длине бунта катанки. Также из опыта проведенных
прокаток было выявлено изменение температуры катанки после водяного охлаждения по длине бунта (изменение температуры по одному бунту
∆Т=30—50 °С). Так как время и условия охлаждения по всей длине бунта одинаково, был сделан вывод, что причиной данной разницы температур является неравномерность нагрева по длине заготовок в нагревательной печи прокатного стана.


Измерение температуры заготовки на выходе из печи и после черновой группы (изменение температуры составляло ∆Т=50—80 °С) впоследствии подтвердили это предположение. Перичисленные выше факторы в итоге приводят к большой неравномерности структурных составляющих по длине проката, что напрямую обуславливает значительный разброс (до 50—80 Н/мм2) механических свойств в пределах партии. Такая структура в катанке из рядовых низкоуглеродистых марок стали, позволяет получить уникальный комплекс механических свойств: высокий предел текучести при хорошей пластичности, что не всегда можно получить даже на катанке из некоторых низколегированных марок стали при стандартной прокатке и охлаждении на воздухе (рис. 4). Получение вышеуказанной катанки требует точного соблюдения технологии термоупрочнения. Настройка линии водяного охлаждения зависит от множества факторов: марки стали, необходимых механических свойств, диаметра катанки, состава оборудования линии охлаждения, настройки форсунки высокого давления, скорости прокатки, расхода и давления воды (рис. 5).
Для определения технологических параметров в зависимости от перечисленных факторов были проведены экспериментальные исследования с измерением температуры самоотпуска. От полученных во время экспериментальных прокаток бунтов катанки отбирались пробы для механических испытаний и металлографического анализа полученной микроструктуры. Полученные результаты показывают, что существует достаточно большой диапазон изменения механических свойств. При этом наблюдается такая же тенденция как при повышении содержания углерода в углеродистых марках стали: при повышении прочностных свойств — уменьшаются пластические (рис. 5).
Исходя из марочного сортамента, уровня механических свойств и номинального диаметра, возможно получение оптимального технологического режима, удовлетворяющего запросы потребителей. Одной из наиболее перспективной областью применения термомеханически
упрочненной арматуры малых диаметров является использование ее для
связки арматурного каркаса в высокопрочных железобетонных плитах. Областью применения данной арматуры могут в перспективе быть и другие различные ж/б конструкции, фундаменты и т.д. На сегодняшний день это может обеспечить совершенствование нормативно-технической документации (ГОСТ, ТУ и т.д.) и исследование возможностей использования этого нового вида продукции. Проведенные исследования позволили определить основные параметры процесса термомеханического упрочнения катанки малых диаметров. Впоследствии при пуске на ОАО «ММК» стана 170 после адаптации полученных результатов к условиям прокатки на новом стане позволит освоить данный сортамент при массовом производстве.
ВЫВОДЫ
- Рассмотрены процессы, происходящие при деформации металла в горячем состоянии. Определены факторы, наиболее влияющие на формирование структуры металла после деформации.
- Показана перспективность развития процесса ТМО при производстве катанки с учетом ее геометрических размеров и особенностей производства: особо малое сечение и высокие скорости деформации в отличие от других видов металлопродукции получаемых путем горячей прокатки.
- Показаны результаты использования такого инструмента, как моделирование температуры с целью получения необходимых механических свойств катанки при горячей прокатке с учетом существующих технологических возможностей стана, а также с точки зрения влияния горячей пластической деформации и химического состава на структуру.
- Приведены результаты применения использования термомеханической обработки при прокатке на структуре готовой катанки.

  • " onclick="window.open(this.href," win2 return false >Печать
  • E-mail
Подробности Категория: Сортовой прокат

Сортовой прокат

В машиностроении, строительстве, на транспорте широко применяется металлический прокат : листы, полосы, ленты, рельсы, балки и т. д. Его получают в результате обжатия слитка металла в горячем или холодном состоянии между вращающимися валками прокатного стана. Таким образом обрабатывают сталь, цветные металлы и их сплавы.

Профиль проката (форма его поперечного сечения ) зависит от формы валков. На рисунках показаны основные профили продукции прокатного производства, называемой сортовым прокатом.

Различают следующие профили сортового проката : простые (круг, квадрат, шестиугольник, полоса, лист ); фасонные (рельс, балка, швеллер, тавр и др.); специальные (колеса, арматурная сталь и др.).

Чаще всего сортовой прокат используется в качестве заготовок для различных деталей. Например, из шестигранного прутка делают болты, гайки. Из круглого проката вытачивают цилиндрические детали на токарных станках. Уголковый прокат применяется в производстве рам, каркасов, стеллажей и т. д.

Прокаткой можно придать заготовке форму готовой детали, тем самым избежать дополнительной обработки и, следовательно, уменьшить отходы металла, сэкономить время.

Ниже представлены несколько образцов распространённых видов проката: труба, арматура, балка, швеллер, лист, уголок, полоса и т.д.

Сортовой прокат - один из видов полуфабрикатов . Так называют продукт труда, предназначенный для дальнейшей обработки и получения готовых изделий.
С некоторыми видами полуфабрикатов вы уже знакомы - это пиломатериалы, фанера, проволока.
Листовой прокат подразделяется на тонколистовой (до 4 мм) и толстолистовой (свыше 4 мм

Виды и свойства стали

Сталь - это сплав железа с углеродом (до 2%) и другими химическими элементами. Она широко применяется в машиностроении, на транспорте, в строительстве, быту.
В зависимости от состава различают углеродистую и легированную сталь. В углеродистой стали содержится 0,4...2% углерода. Углерод придает стали твердость, но увеличивает хрупкость, снижает пластичность. При добавлении в сталь во время плавки других элементов: хрома, никеля, ванадия и др. - изменяются ее свойства. Одни элементы повышают твердость, прочность, другие - упругость, третьи придают антикоррозийность, жаропрочность и др. Стали, в которых есть эти элементы, называются легированными. В марках легированной стали добавки обозначают буквами: Н - никель , В - вольфрам , Г - марганец , Д - медь , К - кобальт , Т - титан .

По назначению различают конструкционную, инструментальную и специальные стали.
Конструкционная углеродистая сталь бывает обыкновенного качества и качественная. Первая - пластичная, но обладает невысокой прочностью. Применяется для изготовления заклепок, шайб, болтов, гаек, мягкой проволоки, гвоздей. Вторая отличается повышенной прочностью. Из нее изготавливают валы, шкивы, ходовые винты, зубчатые колеса.
Сталь инструментальная обладает большей твердостью, прочностью, чем конструкционная, и применяется для изготовления зубил, молотков, резьбонарезных инструментов, сверл, резцов.
Специальные стали - это стали с особыми свойствами: жаропрочные, износостойкие, нержавеющие и др.
Все виды сталей маркируются определенным образом. Так, конструкционная сталь обыкновенного качества обозначается буквами Ст . и порядковым номером от 0 до 7 (Ст. О , Ст. 1 и т. д.- чем выше номер стали, тем выше содержание углерода и предел прочности), качественная - двумя цифрами 05 , 08 , 10 и т. д., показывающими содержание углерода в сотых долях процента. По справочнику можно определить химический состав стали и ее свойства.
Свойства стали можно изменять с помощью теплового воздействия - термической обработки (термообработки). Она заключается в нагреве до определенной температуры, выдержке при этой температуре и последующем быстром или медленном охлаждении. Диапазон температур может быть широким в зависимости от вида термообработки и содержания углерода в стали.
Основные виды термообработки - закалка, отпуск, отжиг, нормализация .
Для повышения твердости стали применяют закалку - нагревание металла до определенной температуры (например, до 800 °С) и быстрое охлаждение в воде, масле или других жидкостях.
При значительном нагревании и быстром охлаждении сталь становится твердой и хрупкой. Хрупкость после закалки можно уменьшить с помощью отпуска - остывшую закаленную стальную деталь вновь нагревают до определенной температуры (например, 200...300°С), а затем охлаждают на воздухе.
У некоторых инструментов закаливают только их рабочую часть. При этом повышается долговечность всего инструмента.
При отжиге заготовку нагревают до определенной температуры, выдерживают при этой температуре и медленно (в этом главное отличие от закалки) охлаждают . Отожженная сталь становится мягче и поэтому лучше обрабатывается.
Нормализация - разновидность отжига, только охлаждение происходит на воздухе . Этот вид термообработки способствует повышению прочности стали.

Термическую обработку стали на промышленных предприятиях выполняют рабочие-термисты . Термист должен хорошо знать внутреннее строение металлов, их физические, технологические свойства, режимы термообработки, умело пользоваться термическими печами, строго соблюдать правила безопасности труда.

Важнейшие механические свойства стали - твердость и прочность . На твердость сталь испытывают при помощи специальных приборов-твердомеров . Метод измерения основан на вдавливании в образец более твердого материала: шарика из твердой стали, алмазного конуса или алмазной пирамиды.

Значение твердости НВ определяют делением нагрузки на площадь поверхности отпечатка, оставляемого в металле (метод Бринелля ) (рис. справа, а ),

или по глубине погружения в металл алмазного острия, стального шарика (метод Роквелла ) (рис. 6 ).

Прочность стали определяют на разрывных машинах испытанием образцов специальной формы, растягивая их в продольном направлении вплоть до разрыва (рис. слева). Определяя прочность, делят наибольшую нагрузку, которая предшествовала разрыву образца, на площадь его первоначального поперечного сечения.

Исходные заготовки для сортовых станов - блюмы - последовательно пропускают через ряд калибров. В зависимости от стадии процесса прокатки различают калибры обжимные (уменьшающие сечение заготовки), черновые (приближающие сечение заготовки к заданному профилю) и чистовые (дающие окончательный профиль). В качестве примера на рис. 7 показана система из 9 калибров для получения рельсов. После прокатки прутки разрезают на мерные заготовки и правят в холодном состоянии.

Рис. 7.

Производство листового проката.

Исходную заготовку - сляб - прокатывают (после второго нагрева) в толстый лист большей частью на станах с двумя рабочими клетями (черновой и чистовой), расположенными друг за другом. Перед черновой клетью сбивают окалину. Чистовая клеть кварто имеет рабочие валки меньшего диаметра, чем черновая. После прокатки листы правят и обрезают на заданные размеры.

Тонкие листы прокатывают в горячем и холодном состояниях. Горячую прокатку ведут на непрерывных многоклетьевых станах, имеющих 2 группы клетей (черновую и чистовую). Перед каждой группой в окалиноломателях очищают листы от окалины. Выходящий из чистовых клетей лист сматывается в рулон. Далее листы в рулонах передаются на отделочные операции (правку, разрезку и др.) или на дальнейшую холодную прокатку. С уменьшением толщины листов до определенной величины горячая прокатка сопровождается быстрым остыванием металла, растет сопротивление деформации и увеличиваются отходы металла в окалину из-за неизбежных частых подогревов. Поэтому листы тоньше 2 мм в горячем состоянии прокатывать сложно, и такие листы, как правило, получают холодной прокаткой, которая обеспечивает лучшее качество их поверхности и большую точность по толщине. Холоднокатаный лист катают из горячекатаного. Предварительно горячекатаный лист очищают от окалины травлением в кислотах и промывают. Прокатывают на непрерывных станах кварто и на многовалковых станах с применением смазки. Для снятия наклепа проводят промежуточный отжиг в печах с защитной атмосферой, после чего направляют на дальнейшую прокатку или на дрессировку (холодная прокатка с небольшим обжатием 0,5-5 % за один проход без смазки). В результате дрессировки повышается прочность, улучшается штампуемость и качество поверхности. Далее проводят отделочные операции: обрезка кромок, разрезка на мерные листы, нанесение антикоррозионных покрытий (цинк, олово, алюминий, пластмасса, лак), полирование и др.

Производство труб.

Бесшовные трубы. При прокатке бесшовных труб первой операцией является прошивка - образование отверстия в круглой заготовке. Прошивку выполняют в горячем состоянии на прошивных станах (схема поперечно-винтовой прокатки, рис. 8, двумя бочкообразными валками, оси которых расположены под углом (4-14°) друг к другу. Валки вращаются в одном и том же направлении. В результате этого заготовка 2 получает одновременно вращательное и поступательное движение. В зоне деформации заготовки преобладают радиальные растягивающие напряжения, что приводит к разрыхлению центральной части заготовки, образованию полости и облегчает прошивку отверстия оправкой 3, устанавливаемой на пути движения заготовки.

Вторую операцию - последующую прокатку полученной гильзы в трубу нужных диаметра и толщины стенки - производят на раскатных станах (схема продольной прокатки). Гильзу раскатывают между двумя валками 1 с последовательно расположенными круглыми калибрами и оправкой 2 (рис. 8). Оправку закрепляют на длинном стержне так, чтобы зазор между оправкой и калибром валка определял толщину стенки трубы. Перед прокаткой в следующем калибре трубу поворачивают на 90° . Бесшовные трубы по механическим, физическим, эксплуатационным свойствам превосходят литые и сварные, но значительно дороже.

Сварные трубы. Сварные трубы получают из плоской заготовки - ленты, называемой штрипсом , по следующей технологии: ленту сворачивают в трубу в формовочном непрерывном стане дуо с числом клетей от 5 до 12 (рис. 9).

Рис. 8.

При выходе из последней клети стана трубная заготовка поступает в электросварочный агрегат, где кромки трубы прижимаются друг к другу роликовыми электродами и свариваются. Далее трубу правят, калибруют, разрезают на мерные куски, производят другие отделочные операции. Кроме электросварки сопротивлением, применяют печную сварку, автоматическую электродуговую под флюсом, индукционную.

Рис. 9.

Рис. 10.

Проволочные станы бывают полунепрерывные и непрерывные и предназначены для прокатки проволоки-катанки диаметром 5-10 мм. Проволоку меньшего диаметра получают волочением.

Производство специальных видов проката

К специальным видам прокатки относят прокатку профилей периодического сечения, колес, шаров, колец и др. Периодические профили изготавливают, в основном, поперечной и поперечно-винтовой прокаткой. На рис. 10. показана схема стана поперечной прокатки.

Щуп 4 скользит по копировальной линейке 3, жестко связанной с кареткой 2 натяжного устройства. В зависимости от профиля копировальной линейки 3 рабочие валки 1 по мере ее движения сближаются или расходятся, изменяя соответственно диаметр прокатываемого профиля. Периодические профили применяют как фасонные заготовки для последующей штамповки и как заготовку под окончательную механическую обработку (полуоси автомобилей, ступенчатые валы и др.

На рис. 11, б дана схема стана поперечно-винтовой прокатки. Здесь валки 6 и 8 вращаются в одну и ту же сторону. Ручьи валков соответствующей формы сделаны по винтовой линии. Заготовка 5 при прокатке получает вращательное и поступательное движение; от вылета из валков она предохраняется центрирующими упорами 7. Такие станы используют для прокатки заготовок шаров и сферических роликов подшипников качения. На рис. 11 показана последовательность изготовления железнодорожного колеса.

Рис. 3.19.

Исходной заготовкой являются слитки или прокат круглого сечения. После нагрева заготовку осаживают на гидравлическом прессе и прошивают отверстие (рис. 11, а); затем на более мощном прессе формируют в штампе ступицу, диск и контур обода (рис. 11, б). Полученная заготовка поступает на колесопрокатный стан, где раскатывают диск, прилегающий к ободу, раскатывают обод и окончательно оформляют гребень на ободе колеса (рис. 11, в).

Производство гнутых профилей.

Горячей прокаткой фасонных профилей невозможно получить стенки с толщиной менее 2-3 мм. Фасонные тонкостенные профили, легкие, но жесткие, сложной конфигурации и большой длины, можно получить методом холодной гибки листового материала на специальных гибочных роликовых станах. Станы имеют 6-20 последовательно расположенных клетей непрерывного типа. В каждой паре гибочных роликов меняется форма листовой заготовки, постепенно приобретая к последней клети заданную форму (рис. 12).

Площадь сечения не меняется. Толщина заготовок из листовой стали или цветных металлов 0,3-20 мм, а максимальная ширина 600-2500 мм.

Рис. 12.

При одних и тех же прочностных свойствах гнутые профили на 25-40 % легче горячекатаных фасонных профилей, что обусловливает их широкое применение в автомобильной и авиационной промышленности, в машиностроении и строительстве (рис. 13).

Рис. 13. Основные виды гнутых профилей: а, г - профили с элементом двойной толщины; б - профили замкнутого типа; в - гофрированные профили

Прокатный стан - это совокупность привода, шестеренной клети, одной или нескольких рабочих клетей. Прокатные станы классифицируют по трем основным признакам: по числу и расположению валков; по числу и расположению рабочих клетей; по их назначению. Прокатка металла осуществляется при прохождении его между валками, вращающимися в разных направлениях. При прокатке металл обжимается, в результате чего толщина полосы уменьшается, а ее длина и ширина увеличиваются.

Основным оборудованием прокатных цехов являются прокатные станы. Заготовку в прокатном производстве называют полосой.

Схема расположения технологического оборудования прокатного стана зависит от вида выпускаемой продукции. На рис. 3.23 приведена схема производства изделий сортового проката. Исходной заготовкой в этом случае является стальной слиток массой до 60 т. Слиток нагревают в нагревательных колодцах 1 и подают на слитковоз, который привозит и укладывает слиток 2 на приемный рольганг блюминга 3. После прокатки на блюминге получают полупродукт квадратного сечения (от 140х140 до 400х400 мм), называемый блюмом 4. Блюм, двигаясь по рольгангу, проходит машину огневой зачистки, где производится зачистка поверхностных дефектов, и подается к ножницам, где режется на мерные заготовки. Далее блюм поступает (иногда после дополнительного нагрева) на заготовочный стан 5, где производится прокатка на блюмы сечением от 50х50 до 150х150 мм, и затем - непосредственно на сортопрокатный стан. Для получения требуемого профиля заготовка проходит ряд клетей с калиброванными валками. На рис. 3.23 представлено полунепрерывное расположение клетей сортопрокатного стана. В первой группе (6, 7, 8) заготовка прокатывается непрерывно, т.е. находится в них одновременно, а во второй группе (9, 10) осуществляется последовательная прокатка.

На сортовых станах заготовка последовательно проходит через ряд калибров. Разработка системы последовательных калибров, необходимых для получения того или иного профиля, является сложной задачей. Число калибров зависит от сложности профиля и разности размеров поперечных сечений исходной заготовки и конечного изделия. Так для получения рельсов необходимо пропустить полосу через систему из девяти калибров (рис. 3.24).

Рис. 3.23. Схема производства сортового проката:

1- нагревательный колодец, 2- слиток, 3- блюминг, 4- блюм, 5- заготовочный стан, 6,7,8,9,10- клети сортопрокатного стана

Полученный прокат требуемого профиля разрезают на заданную длину, охлаждают, правят в холодном состоянии, обрабатывают термически и удаляют поверхностные дефекты.

Технология производства листового проката аналогична. Нагретый слиток прямоугольного сечения обрабатывают на обжимных и заготовительных станах. Далее полосу прокатывают в многовалковых клетях листопрокатных станов.

Рис. 3.24. Калибры для прокатки рельсов

Трубопрокатные станы применяют для производства бесшовных и сварных труб. Прокатка бесшовных труб включает две стадии: получение пустотелой гильзы из круглого проката и из пустотелой гильзы готовой трубы. Пустотелые гильзы получают на прошивном стане, а для труб большого диаметра - центробежным литьем. Прошивной стан (рис. 3.25) работает по принципу поперечно- винтовой прокатки. Он имеет два бочкообразных рабочих валка, расположенных под углом 4 … 6° относительно друг друга. Валки вращаются в одном направлении. Для удержания заготовки между рабочими валками имеются направляющие линейки или холостые валки. При вращении рабочих валков заготовка втягивается в зону деформации. По мере продвижения заготовки зазор между валками уменьшается, а окружная скорость на ее поверхности возрастает. Это приводит к скручиванию заготовки, уменьшению ее диаметра и появлению в металле больших внутренних напряжений. Металл в центре заготовки становится рыхлым и сравнительно легко прошивается оправкой.

Для получения из пустотелой гильзы готовой трубы ее прокатывают на пилигримовом стане (рис. 3.26, а). Рабочие валки 3 пилигримового стана вращаются в разные стороны с одинаковой скоростью. При этом направление вращения валков противоположно направлению подачи заготовки 1. Профиль валков переменный, вследствие чего сечение калибра, имеющего форму окружности, непрерывно изменяется при каждом обороте валков. При максимальном размере калибра заготовка с оправкой 2 продвигается в валки на величину подачи. Зев калибра валков 3 захватывает часть гильзы и обжимает ее своей рабочей частью (рис. 3.26, б). После того как валки сделают полный оборот и возвратятся в исходное положение, оправку с заготовкой поворачивают на 90° и снова подают в валки для обжатия. Процесс продолжается до тех пор, пока не будет прокатана вся гильза. Дальше трубы обрабатывают на специальной машине для устранения овальности и разностенности, а затем прокатывают на калибровочном стане для получения окончательных размеров.

Существуют и другие способы прокатки труб, в частности автоматический трубопрокатный стан.

Сварные трубы, диаметр которых достигает 2500 мм, значительно дешевле бесшовных, но менее прочны и долговечны. Для изготовления сварных труб используют плоские горячекатаные полосы (штрипсы), свернутые в рулон 1 (рис. 3.27). Для обеспечения непрерывности процесса передний конец штрипса сваривается с задним концом предыдущего рулона.

Рис. 3.27. Схема производства труб непрерывной печной сваркой:

1- рулон заготовки, 2- правúльная машина, 3- нагревательная печь, 4- формовочно- сварочный стан, 5,6- обжимные клети

Процесс состоит из операций свертывания заготовки в трубу, сварки, калибровки, отделки и правки. Подача концов штрипсов к месту сварки производится при помощи тянущих роликов листоправильной машины 2. Непрерывный штрипс проходит через нагревательную печь тоннельного типа 3, где нагревается до температуры 1320 … 1400 °С. По выходе из печи с поверхности штрипса удаляют окалину (сжатым воздухом). Непосредственно за печью устанавливают многоклетьевой формовочно - сварочный стан 4, в клетях которого штрипс сворачивается в полный круг по схеме показанной на рис. 3.28. Затем кромки сжимаются и свариваются. В последующих клетях 5,6 происходит обжатие трубы до требуемого размера. Для сварки труб применяют печной, электрический и газовый нагрев кромок полосы. Собственно процесс сварки кромок сформованной трубной заготовки представляет собой процесс кузнечной сварки, заключающейся в использовании способности к межатомному сцеплению сдавливаемых поверхностей металлов, нагретых до высокой температуры. Трубы большого диаметра изготовляют преимущественно с применением автоматической дуговой сварки под флюсом.

В настоящее время большое распространение получил также способ изготовления труб свертыванием полосы по спирали.

Технологии изготовления специальных видов проката разнообразны. Наиболее часто используют прокатку периодических профилей, которые применяют как фасонную заготовку для последующей штамповки и как заготовку под окончательную механическую обработку. Периодические профили в основном изготовляют поперечной и поперечно-винтовой прокаткой. Используют также специальные станы, одна из схем которых приведена на рис. 3.29. Здесь заготовка деформируется тремя валками, вращающимися в одном направлении. Валки по мере движения копировальной линейки сближаются или расходятся, изменяя диаметр прокатываемой заготовки по длине.

На станах поперечно-винтовой прокатки изготавливают также заготовки шаров и сферических роликов подшипников качения (рис. 3.30). Валки 2 и 4 здесь вращаются в одну и ту же сторону. Ручьи валков, образующих калибры соответствующей формы, выполнены по винтовой линии. Заготовка 1 при прокатке получает вращательное и поступательное движения. Удерживается она в зоне деформации с помощью центрирующих упоров 3.

ПРЕССОВАНИЕ

Прессование-это вид обработки металлов давлением, позволяющий изготавливать разнообразные профили из черных и цветных металлов постоянного поперечного сечения по длине (рис. 3.31). При прессовании металл заготовки деформируется с помощью инструментальной оснастки, состоящей из матрицы, пуансона и контейнера (рис. 3.32). Прессование заключается в продавливании с помощью пуансона 1 через отверстие в матрице 4 заготовки 3, находящейся в замкнутой полости (контейнере) 2. Форма и размеры прессованного профиля определяются конфигурацией отверстия матрицы.

Прессование называют также выдавливанием. Процесс прессования, выполняемый по схеме, представленной на рис. 3.32, называется прямым. В этом случае направление выхода металла через отверстие матрицы совпадает с направле нием движения пуансона.

При обратном прессовании (рис. 3.33) металл заготовки 3 вытекает в направлении, обратном перемещению пуансона 5. Для этого матрицу 4 устанавливают в конце полого пуансона, а заготовку 3 помещают в глухой контейнер 2, запирают упорной шайбой 1 и при прессовании остается неподвижной. Трение металла о поверхность контейнера снижается, в связи с чем обратное прессование, которое называют еще встречным, требует меньших усилий.

Прессованием изготовляют не только сплошные профили, но и полые (рис. 3.34). В этом случае заготовка 4, размещенная в контейнере 2, сначала прошивается иглой 6, проходящей через полый пуансон 1. При дальнейшем перемещении пуансона 1металл выдавливается в виде трубы через кольцевой зазор между стенками отверстия в матрице 5 и иглой 6.

В последнее время находит применение гидравлический метод прессования, который называют еще гидроэкструзией (рис. 3.35). Заготовка 5, помещенная в контейнере 3, плотно заходит в конус матрицы 7. Контейнер закрывают крышкой 1 с затвором 2 и уплотняют прокладками 8. Через отверстие 4 в контейнер нагнетается жидкость 6 под высоким давлением, которая выдавливает заготовку через матрицу. В данном случае металл заготовки находится в состоянии всестороннего сжатия жидкостью и деформируется с минимальными потерями на трение. Этот способ позволяет обрабатывать очень хрупкие сплавы.

Исходной заготовкой при прессовании обычно является слиток или прокат. Для повышения качества поверхности изделия и снижения величины трения заготовку предварительно обтачивают на станке, а после нагрева поверхность очищают от окалины.

При прессовании металл подвергается всестороннему неравномерному сжатию. При такой схеме деформирования металл наиболее пластичен. Степень деформации при прессовании характеризуется коэффициентом вытяжки. Он определяется как отношение площади сечения заготовки к площади сечения прессуемого профиля. Вытяжка при прессовании составляет 10 … 50. Прессованием обрабатывают как пластичные, так и малопластичные сплавы: медные, алюминиевые, магниевые, титановые, углеродистые и легированные стали и т.п. Первые из них деформируют без нагрева, вторые в горячем состоянии.

Сортамент прессованных профилей очень разнообразен. Среди прочего таким способом изготавливают проволоку диаметром 5 … 10 мм, прутки диаметром 3 … 250 мм, трубы диаметром 20 … 400 мм со стенкой толщиной 1,5 … 12 мм, профили с полкой толщиной 2 … 2,5 мм и линейными размерами поперечных сечений до 200 мм.

К числу главных преимуществ, которыми отличается процесс прессования, следует отнести следующие.

1) Точность изделий выше, чем при прокатке, что позволяет использовать их без дальнейшей механической обработки.

2) Высокая производительность процесса (скорость выдавливания изделия из отверстия матрицы в некоторых случаях может достигать 20 м/с).

3) Возможность получения сложных профилей, которые невозможно получить другими видами обработки металлов давлением.

4) Прессованием можно обрабатывать такие сплавы, которые ввиду низкой пластичности другими видами обработки давлением деформировать невозможно или затруднительно.

5) Гибкость процесса и легкость переналадки на изготовление другого профиля, т.к. для этого требуется только замена матрицы.

6) Достаточно высокое качество поверхности при холодном прессовании, что позволяет отказаться от отделочных операций.

Прессование имеет и недостатки.

1) наличие отходов металла, так как весь он не может быть выдавлен из контейнера и в нем остается так называемый пресс-остаток, который после окончания прессования отрезается от полученного профиля. Масса пресс – остатка обычно составляет 8 … 12%, но в некоторых случаях может быть и очень большой. Так при прессовании труб большого диаметра масса пресс – остатка может достигать 40% массы исходной заготовки.

2) Большой износ инструмента, т. к. работает он в исключительно тяжелых условиях, испытывая кроме больших давлений действие высоких температур.

3) Высокая стоимость инструмента для прессования, т.к. изготавляют его из высококачественных инструментальных сталей и жаропрочных сплавов.

ВОЛОЧЕНИЕ

Волочение это вид обработки металлов давлением, при котором формоизменение заготовки 2 осуществляется за счет ее протягивания через постепенно сужающееся отверстие в специальном инструменте, называемом волочильной матрицей 1 (рис. 3.36). При этом уменьшается площадь поперечного сечения заготовки и увеличивается ее длина. Изделие приобретает профиль, соответствующий конфигурации отверстия матрицы.

Волочением обрабатывают катанные и прессованные заготовки из стали, цветных металлов и их сплавов как в горячем виде, так и в холодном. В результате получают самые разнообразные профили (рис. 3.37). В отличие от прессования волочением невозможно получить пустотелый профиль (трубу) из заготовки сплошного поперечного сечения. В этом случае необходимо иметь пустотелую заготовку. Волочением труб по схеме, указанной на рис. 3.36 (т.е. с помощью только матрицы), не удается изменить толщину стенки изделия. При необходимости деформирования стенки пустотелой заготовки внутрь ее помещают дополнительный инструмент – оправку. Оправки бывают подвижными (недеформируемыми и деформируемыми) (рис. 3.38 а, б), закрепленными (рис. 3.38 в) и самоустанавливающимися (рис. 3.38 г). Применение оправок позволяет также повысить качество внутренней поверхности трубы.

Особенностью процесса волочения является приложение постоянного растягивающего усилия к части заготовки, вытягиваемой из матрицы. Для предотвращения ее обрывов необходимо создать условия, при которых формоизменение заготовки будет происходить только в зоне деформации, расположенной внутри матрицы. Пластическая деформация переднего конца изделия должна быть исключена. Это достигается конструкцией отверстия матрицы, выбором размеров заготовки и подбором смазки. Для того, чтобы заготовку не оборвало, необходимо добиться, чтобы растягивающие напряжения в ней не превышали величины 0,6 σ В (временного сопротивления) материала заготовки. Количественно деформацию при волочении можно оценить коэффициентом вытяжки - отношением площади исходного попереч ного сечения к конечному.

В связи с тем, что на выходящем из волочильной матрицы конце изделия пластическая деформация недопустима, величина коэффициента вытяжки ограничена, и при обработке в холодном состоянии не должна превышать за один проход значения 1,05 … 1,5. В связи с низким коэффициентом вытяжки обычно для получения необходимых размеров профилей процесс волочения повторяют многократно через ряд постепенно уменьшающихся отверстий, а для восстановления пластичности металл, упрочненный волочением, подвергают промежуточному рекристаллизационному отжигу после одного - двух переходов.

Сортамент изделий, изготовляемых волочением, очень разнообразен. Это проволока диаметром 0,002 … 10 мм, разнообразные фасонные профили, примеры которых показаны на рис. 3.37, прутки диаметром 3 … 150 мм, трубы диаметром от капиллярных до 500 мм и с толщиной стенки 0,1 … 10 мм, сегментные, призматические и фасонные шпонки, шлицевые валики.

Инструментом для волочения являются волочильные матрицы и оправки. Их изготавливают из инструментальных сталей, металлокерамических и минералокерамических сплавов и технических алмазов (для волочения проволоки диаметром менее 0,2 мм).

Волочение производят на волочильных станах. Они бывают периодического и непрерывного действия. Из станов периодического действия наиболее распространены цепные станы (рис. 3.39). Конец заготовки 7 пропускается через отверстие в матрице 8и захватывается клещами 6, которые закреплены на каретке 5. Перемещение каретки по станине 1 происходит при зацеплении крюка 2 за ось бесконечной пластинчатой цепи 3, приводимой в движение от электродвигателя. Когда изделие выходит из матрицы, натяжение между крюком и цепью уменьшается и противовес 4 поднимает крюк и отсоединяет его от цепи.

Станы периодического действия просты в устройстве и эксплуатации, однако длина обрабатываемой здесь заготовки невелика (6 … 7 метров), а скорость процесса небольшая - 10 … 20 м/мин.

Станы непрерывного действия более быстроходны и позволяют обрабатывать заготовки длиной десятки тысяч метров.

Из непрерывных станов чаще всего встречаются барабанные (рис. 3.40). Такие станы обрабатывают заготовку 1, свернутую в бухту. Бухту размещают на размоточном столе 2, передний конец заготовки пропускают через волочильную матрицу 3 и закрепляют на барабане 4, который приводится в движение с помощью электродвигателя 6 через привод 5. Стан включают и осуществляют процесс волочения, причем изделие также сматывается в бухту на барабане. Это обеспечивает компактность обрабатываемого материала, что очень важно при транспортировке, хранении и термообработке. Кроме этого снижаются технологические отходы, а скорость процесса увеличивается в среднем до 10 м/с (известны барабанные станы для волочения тонкой проволоки, осуществляющие процесс со скоростью до 40 м/с). Кроме однобарабанных станов, существуют многобарабанные конструкции (рис. 3.41). Их называют также станами многократного волочения. Здесь заготовка 4 последовательно проходит через несколько (до 20) волочильных матриц 5. Заготовка после прохождения через отверстия каждой матрицынаматывается на промежуточные тянущие барабаны 3, а затем на приемный барабан (на схеме не показан). Скорость вращения каждого последующего барабана возрастает пропорционально удлинению заготовки.

Технологический процесс волочения включает следующие основные операции.

1) Предварительная термическая обработка - рекристаллизационный отжиг, с целью повышения пластичности металла.

2) Очистка заготовки от окалины (металл протравливают в растворах кислот и затем последовательно промывают горячей и холодной водой).

3) Покрытие поверхности заготовки тонким слоем гидрата окиси железа или медью, фосфатом, известью для удержания смазки на поверхности металла.

4) Заострение концов заготовки для удобства протягивания ее через отверстие и захвата клещами волочильного стана.

5) Волочение в один или несколько проходов в зависимости от требуемой степени деформации.

6) Межоперационная термическая обработка для снятия наклепа (после термической обработки - очистка заготовки и нанесение подсмазочного слоя).

7) Отделка готовой продукции.

Процесс волочения имеет следующие достоинства.

1) Высокая точность геометрических размеров изделия, определяемая только размерами отверстия матрицы (допуск 0,02 мм).

2) Высокое качество поверхности соизмеримое со шлифованием при обработке резанием.

3) Высокая производительность. Скорость волочения проволоки на станах непрерывного действия достигает 10 м/с, а для тонкой проволоки – 40 … 50 м/с.

4) Повышение прочности изделия за счет наклепа при холодной обработке.

5) Малая стоимость инструмента и оборудования.

6) Возможность получения длинномерных профилей (десятки тысяч метров), которые не удается получить другими способами.

7) Малые технологические отходы металла.

Недостатки процесса.

1) Сортамент изделий, получаемых волочением, ограничен, как и размеры профилей.

2) При обработке стали требуются неоднократные отжиги и травление поверхности для удаления окалины.

КОВКА

Ковка является одним из важнейших способов получения заготовок в машиностроении. Эти заготовки называют коваными поковками, или просто поковками. Ковкой получают разнообразные по форме и размерам поковки массой от 0,1 кг до 300 тонн. При последующей обработке на металлорежущих станках из поковок получают готовые изделия. Исходными заготовками для ковки являются металлические слитки и прокат. Особенностью ковки является нагрев заготовки перед ее деформированием.

Ковка заключается в формоизменении нагретой заготовки рабочими поверхностями универсального инструмента (бойками) при свободном течении металла в стороны. Ковкой изменяют конфигурацию заготовки за счет многократного последовательного воздействия бойками на отдельные ее участки, в результате чего заготовка, деформируясь, постепенно приобретает заданную форму и размеры.

Воздействие на заготовку может быть ударным, если она обрабатывается на молоте, или статическим – при обработке на прессе.

Для выполнения операций ковки используют основной технологический, поддерживающий (вспомогательный) и контрольно-измерительный инструменты. К основному инструменту относят бойки (плоские и вырезные), топоры, раскатки, прошивни, оправки, подкладные штампы и т.п. Поддерживающий инструмент- это клещи, патроны, консольные поворотные краны, ковочные манипуляторы. Контроль размеров поковок осуществляют с помощью линеек, штангенциркулей, скоб, шаблонов и т.п. Используемые для ковки инструменты считаются универсальными по той причине, что они оказываются пригодными для изготовления различных по конфигурации поковок.

Хотя ковка и уступает горячей объемной штамповке по производительности и точности поковок, однако имеет свою рациональную область применения. Это прежде всего выпуск малых серий поковок небольшой и средней массы (100…200 кг), когда изготовление дорогостоящих штампов для горячей объемной штамповки экономически нецелесообразно. В таких случаях более экономична ковка на молотах универсальным инструментом - бойками. Крупные поковки (особенно массой десятки и сотни тонн) удается изготовлять только ковкой на гидравлических прессах. В общем выпуске поковок, производимых в нашей стране, в среднем 30% приходится на кованые поковки, а 70%- на штампованные. Однако, например, в тяжелом машиностроении число кованых поковок достигает 70%.

ОСНОВНЫЕ ОПЕРАЦИИ КОВКИ

Ковка может быть машинной на молотах и прессах и ручной. Ручная ковка применяется для изготовления художественных изделий, а также используется в ремонтном деле для мелких работ.

Процесс ковки состоит из чередования в определенной последовательности основных и вспомогательных операций.

Операция – это часть технологического процесса, которая выполняется на одном рабочем месте с использованием определенной группы инструмента и включает в себя последовательность действий над заготовкой с целью получения поковок требуемой формы и заданных свойств. Операция состоит из серии переходов. Переход – это часть операции, в процессе которой обрабатывается один участок заготовки одним и тем же инструментом на одном рабочем месте.

Таким образом, каждая операция определяется характером деформирования и применяемым инструментом. К основным операциям ковки относятся: осадка, протяжка, прошивка, отрубка, гибка, скручивание, сварка, штамповка в подкладных штампах.

Осадка - операция, заключающаяся в увеличении площади поперечного сечения заготовки при уменьшении ее высоты (рис. 3.42). Осадку производят бойками или осадочными плитами. Для получения качественной поковки рекомендуется исходную цилиндрическую заготовку выбирать с отношением ее высоты h заг к диаметру d заг не более 2,5, во избежание возможного продольного искривления изделия. Торцы заготовки должны быть ровными и параллельными. Разновидностью осадки является высадка , при которой металл осаживают лишь на части длины заготовки 1 за счет использования подкладного инструмента 2, в результате чего формируется местное утолщение поковки (рис. 3.43).

Протяжка - операция, заключающаяся в уменьшении площади поперечного сечения заготовки или ее части за счет удлинения заготовки. Протяжка осуществляется последовательными ударами или обжатиями отдельных, примыкающих друг к другу участков заготовки при ее подаче вдоль своей оси (рис. 3.44). Сумма определенного числа ударов или обжатий, выполняемых осуществляемых последовательно до определенной толщины заготовки, называется проходом. Два последовательных обжатия с промежуточной кантовкой (поворотом) поковки на 90° называются переходом.

Протяжку выполняют плоскими или вырезными бойками. Ковка в вырезных бойках (рис. 3.45) позволяет избежать ковочных трещин (особенно в случае протяжки осесимметричных заготовок) при ковке низко-пластичных сталей и сплавов и получить более точные размеры поковки.

Деформация при протяжке выражается величиной уковки, и характеризуется отношением площади поперечного сечения исходной заготовки F H к площади конечного поперечного сечения F K .

Чем больше уковка, тем лучше структура металла и выше его механические свойства. Поэтому протяжку применяют не только для получения поковок требуемой формы, но и для повышения качества металла.

Существует ряд разновидностей протяжки.

Разгонка - операция увеличения ширины части заготовки за счет уменьшения ее толщины в этом месте (рис. 3.46).

Протяжка с оправкой - операция уменьшения толщины стенок заготовки с отверстием при сопутствующем увеличении длины поковки (рис. 3.47). Протяжку выполняют в вырезных бойках (или нижнем вырезном 3 и верхнем плоском 2) на слегка конической оправке 1. Для облегчения удаления оправки из поковки куют в направлении к расширяющемуся концу оправки.

Раскатка на оправке - операция уменьшения толщины стенок кольцевой заготовки при увеличении наружного и внутреннего ее диаметров (рис. 3.48). Кольцевая заготовка 1 опирается внутренней поверхностью на цилиндрическую оправку 2, устанавливаемую концами на подставках (люнетах) 3, и деформируется между оправкой и узким длинным плоским бойком 4. После каждого удара или нажатия заготовку поворачивают относительно оправки. При раскатке на оправке ширина кольца несколько увеличивается.

Прошивка - операция получения сквозных или глухих полостей в заготовке за счет вытеснения металла из зоны его контакта с инструментом (рис. 3.49). Прошивка является самостоятельной операцией, служащей для образования углублений или отверстия в поковке либо подготовительной операцией для последующей протяжки или раскатки заготовки на оправке. Инструментом для прошивки являются прошивни, сплошные и пустотелые (рис. 3.50). Отверстия диаметром до 500 мм пробивают сплошным прошивнем с применением подкладного кольца, а отверстия большего диаметра прошивают полым прошивнем. Диа метр прошивня должен быть не более 1/2-1/3 наружного диаметра заготовки. При большем диаметре прошивня форма поковки значительно искажается. В высоких поковках сначала прошивают отверстие с одной стороны (примерно на 3/4 глубины), а затем этим же прошивнем заканчивают прошивку с другой стороны, перевернув поковку на 180 0 . При сквозной прошивке тонких поковок 1 применяют подкладные кольца 2. Прошивка сопровождается отходом части металла 3, которую называют выдрой (рис. 3.51).

Отрубка - операция полного отделения части заготовки по незамкнутому контуру путем внедрения в заготовку деформирующего инструмента (рис. 3.52). Инструментом для рубки служат прямые и фигурные топоры и зубила (рис. 3.53). Отрубку топорами осуществляют для удаления прибыльной и донной частей слитка, излишков металла на концах поковок или для разделения длинной заготовки на более короткие части. Разновидностью отрубки является надрубка, служащая для образования в поковке уступов, заплечиков.

Гибка - операция образования или изменения углов между частями заготовки или придания заготовке изогнутой формы по заданному контуру (рис. 3.54). Гибку осуществляют с помощью различных опор, подкладок, приспособлений и в подкладных штампах. Этой операцией получают угольники, скобы, крюки, кронштейны и т. п. При выборе исходной заготовки следует учитывать искажение первоначальной формы и уменьшение площади поперечного сечения поковки в зоне изгиба, называемое утяжкой. Для компенсации утяжки в зоне изгиба заготовке придают увеличенные поперечные размеры. При гибке возможно образование складок по внутреннему контуру и трещин по наружному. Во избежание этого явления по заданному углу изгиба подбирают соответствующий радиус скругления.

Скручивание - операция, в ходе которой обеспечивается поворот одной части заготовки относительно другой на заданный угол вокруг продольной оси (рис. 3.55). Скручивание применяется при изготовлении коленчатых валов, сверл и т. п. При скручивании используют ключи, воротки, лебедки, кран-балки.

Сварка - операция образования неразъемного соединения путем совместного пластического деформирования предварительно нагретых заготовок (рис. 3.56).

Штамповка в подкладных штампах – ковочная операция, позволяющая изготавливать достаточно сложные по конфигурации поковки (рис. 3.57). Используется при изготовлении небольшой партии таких поковок, как головки гаечных ключей, головки болтов, диски со ступицей, втулки с буртом и т.п. Подкладной штамп может состоять из одной или двух частей, в которых имеется полость с конфигурацией поковки или ее отдельного участка.

При изготовлении конкретной детали операции ковки чередуются в определенной последовательности.

Примером работ, выполняемых свободной ковкой, служит ковка рычага с вилкой (рис. 3.58, а).

Заготовкой для ковки служит пруток прямоугольного сечения. Нагретую заготовку протягивают на прямоугольник требуемого размера, после чего трехгранными призмами ее надрубают (рис. 3.58, б).

Рис. 3.58. Последовательность ковки рычага с вилкой:

а- деталь, б- надрубка, в, г, д - протяжка и надрубка, е- гибка, ж- протяжка

Протянув концы заготовки до толщины головки, делают новые надрубки (рис. 3.58, в), и протягивают каждый конец до требуемого размера (рис. 3.58, г, д). Далее заготовку изгибают и, заложив в середину вилки вкладыш, выглаживают ее. Затем надрубают конец вилки (рис. 3.58, е) и протягивают призмой (рис. 3.58, ж). После этого придают окончательный вид концу вилки с тем, чтобы получить заданную форму поковки.

Оборудование для ковки

Операции ковки выполняют на ковочных молотах и ковочных гидравлических прессах.

Молоты - машины ударного действия, в которых деформирование металла заготовки происходит за счет кинетической энергии подвижных частей, накопленной к моменту соударения с заготовкой. Скорость движения рабочего инструмента в момент удара составляет 3 … 8 м/с, время деформирования - сотые доли секунды. Основной характеристикой молота является масса подвижных (чаще всего пáдающих) частей.

В зависимости от типа привода молоты бывают пневматическими, паровоздушными, механическими, гидравлическими, газовыми, взрывными и др.

По принципу работы молоты бывают простого и двойного действия. У молотов простого действия привод служит только для подъема ударных (падающих) частей, а их движение вниз осуществляется под действием сил тяжести. Привод молотов двойного действия служит как для подъема ударных частей, так и для их движения вниз. Кинетическая энергия падающих частей молотов двойного действия вследствие этого больше, чем молотов простого действия, при одинаковых их массах.

Из приводных молотов наибольшее применение получили пневматические. Подвижными, или в данном случае пáдающими частями являются поршень, его шток и верхний боек. В пневматическом молоте подъем и опускание поршня, к штоку которого крепится верхний боек, совершается с помощью сжатого воздуха давлением 0,2 … 0,3 МПа. Сжатый воздух поступает в рабочий цилиндр от поршневого компрессора, приводимого в движение кривошипно-ползунным механизмом от отдельного электродвигателя. Рабочий и компрессорный цилиндры расположены на одной станине. Пневматические молоты имеют массу падающих частей 50 … 1000 кг и применяются для ковки мелких поковок (до 20 кг).

Пневматические молоты нашли широкое применение в кузницах небольших заводов и мастерских на участках ручной ковки. Это объясняется их низкой стоимостью, простотой обслуживания и высокой надежностью. Достоинством пневматических молотов также является использование электрической энергии, а не пара или сжатого воздуха, применение которых дороже и сложнее (как в случае использования паровоздушных молотов).

Ковочные пневматические молоты обладают следующими характеристиками: масса ударных частей составляет 50 … 150 кг, число ударов - соответственно 225 … 95 в мин. Применяют эти молоты для получения небольших поковок (0,5 … 20 кг) из сортового проката.

Пневматический молот двойного действия (рис. 3.59) оснащен двумя цилиндрами: компрессорным 5 и рабочим 2. Поршень компрессорного цилиндра 4 получает возвратно-поступательное движение от кривошипно-ползунного механизма 6. Воздух, сжатый в компрессорном цилиндре, подается по каналам 3 в верхнюю или нижнюю часть рабочего цилиндра, перемещая соответственно вниз или вверх поршень рабочего цилиндра 1, изготовленный заодно со штоком 11. На штоке закреплен верхний боек 10. Нижний боек 9 крепится к подушке 8, установленной на шаботе 7. Масса шабота превышает массу падающих частей в 10 … 15 раз.

Внешний вид пневматического молота представлен на рис. 3.60.

Основным видом молотов для ковки являются паро-воздушные молоты двойного действия. Масса падающих частей таких молотов составляет 1000 … 8000 кг, а число ударов - соответственно 71 … 34 в мин. Данные молоты предназначены для изготовления средних по массе поковок (20 … 350 кг). Паро-воздушные молоты приводятся в действие паром, поступающим по трубопроводу от котла под давлением 0,7 … 0,9 МПа, или сжатым воздухом, который подается от компрессора под давлением до 0,7 МПа. По типу станин паро-воздушные молоты бывают одно- и двухстоечными. Двухстоечные молоты выпускаются арочного и мостового типов.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Все о бизнесе