Все о бизнесе


Курсовая работа

УГЛЕПЕТРОГРАФИЧЕСКИЕ МЕТОДЫ ДИАГНОСТИКИ КАТАГЕНЕЗА ОРГАНИЧЕСКОГО ВЕЩЕСТВА

ВВЕДЕНИЕ

Осадочные породы часто содержат органическое вещество (ОВ), которые при катагенетическом преобразовании и дает начало нефти и газу. И изучение процесса его преобразования в процессе седиментогенеза, и последующего катагенеза, является очень важной частью исследования процесса образования нефти. До 1960 года РОВ оставалось неизученным и регистрировалось и описывалось, как сплошная, гомогенная масса органического углерода в породе, Однако огромный опыт, накопленный в угольной геологии, позволил развить методы исследований и применить их для изучения РОВ.

Петрология углей, или, углепетрография - довольно молодая геологическая наука, и появилась она в связи необходимостью различать и описывать различные компоненты, углей, а так же по их составу судить о степени преобразованности, стадии катагенеза породы, содержащей ОВ. На начальных этапах своего развития, углепетрография использовала, методы исследования, применяемые в геологии. Так, например, для изучения непрозрачных органических остатков активно использовались полированные аншлифы, для прозрачных, же использовались шлифы. Специфичность физических свойств угля потребовала адаптировать методы исследования, в частности изменить технологию приготовлении аншлифов и др.

За короткое время, углепетрография превратилась в самостоятельную науку. И стала использоваться для решения практических задач, таких как определение состава, а, как следствие, качества угля, а так же, для анализа и предсказания некоторых ценных свойств углей, таких как коксуемость. По мере развития науки, круг решаемых задач все расширялся, в сферу исследования попали такие вопросы, как генезис, разведка и оптимизация использования горючих полезных ископаемых. Кроме того методы углепетрографических исследований активно применяются для исследования РОВ пород. Изучение РОВ имеет огромное значение, т.к. оно очень широко распространено в осадочных горных породах и дает начало жидким и газообразным углеводородам, а так же может дать ученым ценную информацию о фациальной обстановке осадконакопления, степени катагенеза, а так же может служить максимальным геотермометром.

Определение при помощи углепетрографических показателей степени катагенетической преобразованности помогает в решении ряда теоретических и практических задач, например, в разведке и оценке перспективности поиска полезных ископаемых в данном регионе, так же определение направлений проведения геолого-поисковых мероприятий, а так же изучение процесса образования нефти и газа. Так же методы углепетрографии нашли применение и в других областях геологии, например они используются, для восстановления тектонических, климатических обстановок осадкообразования, а так же фациальной принадлежности данного осадка, и в стратиграфии для расчленения немых разрезов.

Благодаря применению методов углепетрографии была уточнена природа исходного материала сапропелевого ОВ. Так же было высказано предположение, что причиной накопления и сохранения больших масс сапропелевого ОВ с высоким нефтегазоносным потенциалом, является антибактериальная активность липидов водорослей. Была дополнена фациально-генетическая классификация РОВ. Была разработана шкала катагенеза РОВ по сапропелевым микрокомпонентам.

витринит катагенез микрокомпонент органический вещество

ГЛАВА 1. Катагенез органического вещества

Катагенез - наиболее длительная стадия преобразования ОВ, которая продолжает диагенез и предшествует метаморфическому преобразованию. То есть, когда в преобразовании пород начинает играть преимущественную роль барическое и термическое воздействие.

Катагенез - один из контролирующих факторов процесса образования нефти. Именно в катагенезе, находится, так называемая, главная зона газо- и нефтеобразования.

Поэтому, наверное, изучение процесса преобразования ОВ играет столь значительную роль в нефтяных исследованиях. Кроме того, изучение катагенеза, важно не только для нефтяной геологии, оно так же позволяет решать вопросы исторической геологии, структурной геологии, помогает при поиске и оценке рудных тел, скоплений твердых каустобиолитов.

Сейчас, принято выделять в катагенезе протокатагенез, мезокатагенез и апокатагенез.

Каждая из этих стадий делится на более мелкие фазы, различные исследователи пользуются различными шкалами самой распространенной является шкала, имеющая в основе своей буквенные индексы.

Эти индексы соответствуют маркам угля, которые как раз сменяются в процессе катагенетического преобразования.

Они утверждены и используются как в угольной, так и в нефтяной геологии.

Иногда у органических остатков фиксируются промежуточное состояние, когда точное определение стадии катагенеза составляет некоторую сложность.

В этом случае используют двойной индекс, который представляет собой сочетание букв обозначающих ближайшие стадии катагенеза.

В разных источниках существуют разные варианты обозначения стадий для сравнения можно привести несколько из них.

В процессе катагенеза происходит изменение ОВ, причем оно является результатом действия целого комплекса различных факторов, основные из них, это температура, давление и геологическое время. Рассмотрим влияние этих трех факторов более подробно. Главенствующую роль в процессе катагенеза, как считается, занимает температура, что объясняется, ролью температуры в химических процессах. Это подтверждается некоторыми практическими и экспериментальными данными [Парпарова Г.М., 1990 г.; 136]. Важнейшая роль температуры, отражает правило Хильта. Сущность которого заключается в том, что в угольных бассейнах, при увеличении глубины, угли объединяются летучими и обогащаются углеродом т.е. углефицируются.

Источниками тепла при катагенезе, можно назвать энергию, выделяемую, при радиоактивном распаде, магматических процессах, тектонических процессах, а так же общее повышение температуры при опускании толщ в процессе регионального метаморфизма. При магматических процессах происходит локальное интенсивное тепловое воздействие, при котором значительно меняется геотемпературный режим определенного участка земной коры. Тепловое воздействие при тектонических процессах носит так же локальный, но слабовыраженный характер, т.к. проявляется только при условии быстрого протекания самого процесса, и в отсутствие интенсивного отвода тепла от очага.

Спорным остается вопрос о реальных конкретных значениях температур, при процессе катагенеза и углеобразования.

Проблема осложняется отсутствием прямых методов определения палеотемператур, вследствие чего, все суждения о них основываются исключительно на косвенных данных и методах исследований. Мнения ученых в оценке реальных температур расходятся. Ранее считалось, что температура должна быть высокой: для каменных углей 300-350 ?С, для антрацитов 500-550?С. Реально же эти температуры заметно ниже, чем предполагалось на основании моделирования и экспериментальных данных. Все угли, образовывались на глубине не превышающей 10 км, и температура, сопровождающая этот процесс не превышала 200-250?С, что подтверждается так же исследованиями в скважинах, пройденных в США, здесь интервалы температур на глубине 5-6 км не превышают 120-150?С.

Сейчас, по результатам изучения зон контактового изменения пород вблизи магматического очага, а так же по некоторым другим данным, можно говорить, что температура данного процесса колеблется от 90 до 350 ?С. Максимальная температура достигается при максимальном опускании толщ, именно в этот период и происходит максимальный катагенез ОВ.

Давление наряду с температурой рассматривается как важнейший фактор изменения ОВ при катагенезе. Существуют различные спорные мнения по поводу роли давления в процессе катагенеза. Одни исследователи считают что давление - это один из важнейших факторов катагенеза. Другие считают, что давление оказывает отрицательное влияние на процесс углефикации. Так, например, считается, что давление способствует уплотнению вещества пород, и, как следствие, сближению его составных частей; это, как считается, способствует лучшему их взаимодействию и процессу преобразования. Об этом свидетельствует нарушение анизотропии витринита. Существует и другое мнение по данному вопросу, некоторые ученые считают не именно давление главным фактором преобразования, а сопровождающее тектонические подвижки выделение тепла и повышение температуры.

Поэтому в большинстве случаев в складчатых поясах, обстановках активного сжатия, степень преобразованности ОВ заметно выше чем в платформенных зонах [Фомин А.Н., 1987 г.; 98]. С другой стороны, процесс углефикации сопровождается обильным газовыделением, и, как следствие, повышение давления должно смещать равновесие данного процесса в обратную сторону, т.е. получается, что давление играет негативную роль в процессе преобразования ОВ. Хотя нельзя забывать, что давление и температура в природном процессе связанны. И характер преобразования ОВ при одной и той же температуре. Но разных давлениях будет различен. Итак, давление играет важную роль в процессе преобразования ОВ, но она, конечно, второстепенна и не сравнима с ролью температуры.

Еще одним фактором процесса катагенетического преобразования является геологическое время его роль, самая сложная для изучения, вследствие отсутствия возможности прямого наблюдения и изучения влияния времени на процесс катагенеза. Существуют различные мнения ученых по этому вопросу. Некоторые ученые считают, что геологическое время не оказывает значительного влияния на процесс преобразования ОВ, ссылаясь на нахождение древнего, но тем не менее, малопреобразованного ОВ. Другие утверждают что время может компенсировать недостаток температуры, это утверждение основано на принципе Ле-Шателье, который говорит, что увеличение температуры примерно на 10 градусов влечет за собой увеличение скорости реакции в два раза. Используя этот закон некоторые ученые утверждают что при большом промежутке времени реакция может протекать при сколь угодно малой температуре процесса. Но не следует забывать что процесс углефикации идет с поглощением тепла, и, как следствие, чтобы реакция пошла, необходимо довести систему до состояния, когда она преодолеет необходимый энергетический барьер активации. Предполагается, что значение температуры, необходимое для начала процесса преобразования ОВ, это 50?C [Фомин А.Н., 1987 г.; 100]. Поэтому время, видимо может компенсировать температуру только в определенных пределах.

Так же следует упомянуть такой фактор, как литологичесий состав пород, подвергающихся катагенезу. Влияние этого фактора подтверждается экспериментальными данными. Так, например П. П. Тимофеевым было впервые обращено внимание на тот факт, что содержание углерода в витрене закономерно увеличивается, а содержание кислорода уменьшается в ряду песчаник-аргиллит-уголь. Так же Г. М. Парпаровой было показано, что в мезозойских отложениях Сургутского района Западной Сибири было показано, что в песчаниках и алевритах показатели преломления витрена большей частью на 00,1 - 00,2 ниже, чем в аргиллитах и углистых породах.

Возможно это влияние связано с различной способностью пород к прогреву, так, например, аномально низкий катагенез ОВ на больших глубинах в районе Прикаспийской впадины объясняется теплопроводящим влиянием соляных куполов, играющих роль естественных природных холодильников. Роль литологического состава до конца не установлена достоверно. Эту неопределенность авторы объясняют различными причинами, такими как тип растительной ассоциации, степень гелификации и биохимического изменения пород в процессе катагенеза. Кроме того, существуют данные, которые говорят об отсутствии зависимости между литологическим составом и показателями катагенеза, в сходных условиях [Фомин А.Н., 1987 г.; 115]. Эти данные позволяют унифицировать данные об изменении оптических свойств ОВ при его преобразовании.

В общем процесс катагенеза в основном зависит от температуры, в меньшей степени от ряда других факторов.

При изучении катагенеза пользуются различными методами. Самыми надежными и точными являются углепетрографические методы исследований. В частности диагностика стадии катагенеза по отражательной способности распространенных микрокомпонентов пород. Эти методы просты по своей сути, не требуют сложного оборудования, а главное отличаются надежностью. Помимо углепетрографических методов используется целый ряд других признаков, они, по большей части, основаны на химическом составе. Это такие показатели как: элементный состав керогена, выход летучих компонентов, ИК-спектроскопия битумоидов и многие другие, они не такие точные но в совокупности могут давать точные оценки, особенно если речь идет об апокатагенезе, так как здесь уже не сказываются первичные генетические особенности ОВ.

Измерение углепетрографических показателей, с точи зрения рациональности технологии проведения исследований имеет ряд преимуществ: можно быстро и четко проводить измерения показателей отражения и преломления на образце небольшого размера, часто недостаточного для проведения химического анализа; можно проводить исследования на микроскопических включениях в породу; в результате анализа получаем параметры не комплекса микрокомпонентов, а конкретного, что позволяет применять данный метод ко всем осадочным бассейнам, так как определенные микрокомпоненты распространены повсеместно и могут служить надежным диагностическим признаком для стадий катагенеза. Таким распространенным микрокомпонентом является витринит, в основном измеряется его отражательная способность. Витринит удобен еще и тем, что он обладает закономерным изменением своих оптических свойств в процессе преобразования. Именно поэтому отражательная способность витринита принята за эталон диагностики стадий катагенеза.

ГЛАВА 2 Отражательная способность мацералов органического вещества

Отражательная способность витринита

Из всех микрокомпонентов ОВ самым лучшим с точки зрения показательности при изучении степени катагенетического преобразования является витринит. Дело в том что, для надежной диагностики необходим микрокомпонент, который должен иметь закономерное изменение свойств в процессе преобразования, в то же время он должен быть широко распространен в ОВ. Витринит отвечает всем вышеуказанным требованиям, в отличие от остальных микрокомпонентов углей и РОВ. Которые либо сливаются с общей органической массой углей уже на средних стадиях катагенеза (лейптинит), либо слабо и неравномерно реагирующими на изменение параметров окружающей среды(фюзинит). И только витринит меняет свои свойства закономерно постепенно и очень легок в диагностике.

Именно на основании отражательной способности витринита построено большинство шкал для определения степени катагенеза. Кроме него используются и другие микрокомпоненты РОВ, но в меньшей степени. В основе метода лежит закономерность повышения блеска в процессе катагенеза. Это легко можно увидеть визуально, если рассмотреть изменение блеска углей в процессе их изменение. Не требуется особых приборов, чтобы заметить, что блеск антрацита, например, намного выше блеска, бурого угля. Отражательная способность тесно связана с внутренним строением вещества, а именно со степенью упаковки частиц в веществе. От этого как раз она и зависит. Конечно, изучение степени катагенеза по отражательной способности проводится с использованием специального оборудования, например, установка ПООС-I прибор состоит из поляризационного микроскопа, оптической насадки, фотоэлектронного умножителя (ФЭУ) и регистрирующего устройства. При проведении исследования сравниваются фототоки, вызванные светом, отраженным от поверхности образца и эталона.

Итак, за эталон при проведении исследований принят витринит, точнее его отражательная способность. Она измеряется при помощи различных фотометров и эталонов в воздухе и иммерсионной среде при строго перпендикулярном падении света на хорошо отполированную поверхность образца. Измерения проводятся лишь в узком диапазоне длин волн: от 525 до 552 нм. Это ограничение связано с техническими характеристиками прибора. За эталон принята длинна волны 546,1 нм, но небольшие колебание вокруг этого значения, практически не оказывает заметного влияния на значение измерения. Образец закрепляется на столике микроскопа и останавливается так, чтобы его поверхность была перпендикулярна оси оптической насадки. Как было сказано выше, мы измеряем интенсивность отраженного света поочередно у образца и эталона при помощи ФЭУ. По определению, отражательная способность - способность отражать часть света падающего на поверхность. Если перевести это на числовой язык, то это отношение отраженного света к падающему.

Что можно записать, как:

Где I1 - это интенсивность отраженного света, а I2 - это интенсивность падающего света. Практически же при проведении измерений используется формула

Здесь R - искомый показатель отражения, d - показания прибора при измерении исследуемого вещества, а R1, соответственно, - показатель отражения эталона и d1- показания прибора при измерении эталона. Если настроить прибор-приемник на нулевое значение для эталона, тогда формула упрощается до R=d.

Кроме витринита, для проведения измерений используются и другие микрокомпоненты ОВ. Некоторые из них обладают свойством анизотропии отражательной способности. Обычно применяется три параметра измерения: Rmax Rmin Rcp. Повышение анизотропии витринита в процессе катагенеза связано в основном с процессом постепенного упорядочивания ароматических гуминовых мицелл, связанного с повышением давления с увеличением глубины погружения. Измерения в случае анизотропного препарата идейно ничем не отличаются от измерения однородного образца, но проводится несколько измерений. При этом столик микроскопа вращается на 360? с промежутками по90?. Всегда детектируется два положения с максимальным показателем отражательной способности и два с минимальной. Угол между каждыми из них составляет 180?. Измерения проводятся для нескольких фрагментов породы, и позже вычисляется среднее значение. Как среднее арифметическое средних значений максимального и минимального измерения:

Можно сразу определять среднее значение, выбирая угол поворота 45? от максимального или минимального значения, но это измерение верно только при изучении слабо преобразованного ОВ.

При проведении исследований, возникает несколько проблем, связанных с технологией. Например, если мы имеем породу, с низким общим содержанием ОВ то появляется необходимость специальной обработки образца и перевода его в форму концентрированных аншлифов-брикетов. Но в процессе получения концентратов исходное органическое вещество подвергается химической обработке, что не может не сказаться на оптических свойствах вещества. Кроме того теряется информация о структуре органического вещества породы. Искажения в измерениях может внести и то, что технология процесса приготовления препарата не стандартизировано и готовность образца обычно определяется визуально. Проблему представляет так же физические свойства пород, такие например как сильная минерализация или хрупкость угля, в этом случае приходится изучать отражательную способность на той площади поверхности, которую удалось получить. Если правильно выбрать участок, то окружающие дефекты практически не влияют на измерения. Но принципиально количественные величины ошибок, практически не влияют на определение стадии катагенеза.

Образцы изучаются, обычно в условиях обычной воздушной среды, это легко, быстро. Но если необходимо детальное изучение под большим увеличением, применяют иммерсионные среды, обычно это кедровое масло. Оба измерения верны и каждый из них используется, но каждый в своем определенном случае. Преимущества измерений в иммерсионной среде заключаются в том, что они позволяют изучать частицы с малой размерностью, кроме того, повышается резкость, что позволяет более детально диагностировать степень катагенеза.

Дополнительной трудностью при исследованиях является диагностика микрокомпонентов ОВ так как они обычно определяются в проходящем свете. В то время как отражательная способность, очевидно в отраженном. Поэтому. Обычно в процессе исследований комбинируют два метода. То есть попеременно используют проходящий и отраженный свет для изучения одного и того же фрагмента РОВ. Для этого обычно используются двусторонне полированные шлифы. В них после просмотра и определения микрокомпонента в проходящем свете освещение переключается и проводятся замеры в отраженном свете.

Витринит может использоваться не только для определения степени преобразованности органического вещества, но и для определения его отношения к породе. У сингенетичного витринита форма фрагментов обычно удлиненная, расположены частицы параллельно плоскостям напластования и, обычно обладают клеточной структурой. Если же мы имеем дело с частицами витринита округлой, окатанной формы, то скорее всего это переотложенное вещество.

Отражательная способность других микрокомпонентов ОВ

Безусловно, витринит - это наиболее удобный для определения степени катагенеза микрокомпонент ОВ, но не всегда его удается обнаружить в породе, и не всегда он имеет хорошую сохранность. В таком случае изучают другие микрокомпоненты угля для изучения стадий кататгенеза, например, семивитринит SVt, cемифюзинитF1, фюзинит F3, лейптинит L. Поданным исследований этих компонентов уже составлены шкалы катагенеза. Они позволяют использовать для диагностики стадий результаты, полученные при изучении семивитринита, семифюзинита и фюзинита. Точность определения ограничивается стадией, вследствие нелинейности изменения оптических свойств данных микрокомпонентов. Нелинейность характерна для начальных стадий преобразования, что связывается с первичными генетическими особенностями ОВ. На поздних стадиях отражательная способность всех микрокомпонентов равномерно нарастает.

Некоторыми учеными сделана попытка использовать отражательную способность для определения преобразованности ОВ. Правда он применим только в узком интервале, ограничение связано с проблемой диагностики самого лейптинита. Его отражательная способность изменяется от 0, 04 % R? на стадии Б до 5,5 % R? на антрацитовой стадии. Общий характер закономерности изменения отражательной способности сходен с витринитом, но отличается от последнего по абсолютным значениям.

Выше рассмотрены способы определения степени преобразованности ОВ по гумусовым микрокомпонентом, и этот метод может быть применен для нефтематеринских отложений, если в них присутствуют остатки высшей наземной растительности. Зачастую же ситуация иная, и в породе присутствуют только сапропелевые разности ОВ. Тогда встает вопрос, возможна ли диагностика стадий катагенеза по определенным составляющим сапропелевого ОВ. Некоторыми исследователями широко применяется показатель преломления коллоальгинита, колохитинита, псевдовитринита, и некоторых других остатков морских отложений[ Фомин А.Н., 1987 г.; 121]. Но при этом приходится применять концентраты керогена, что не может не повлиять на характеристики вещества. Гораздо точнее показатели тек микрокомпонентов ОВ, которые имеют закономерный характер изменения свойств в процессе преобразования, и которые можно изучать в аншлифах - штуфах, без изменения характера нахождения ОВ в породе. Кроме того, псевдовитринит имеет повсеместное распространение в нефтематеринских породах, что позволяет унифицировать шкалу.

Был изучено поведение псевдовитринита на основе проб, содержащих одновременно гумусовые и сапропелевые составляющие ОВ, была выведена закономерность в изменении отражательной способности. Оказалось, что во всем диапазоне шкалы катагенеза отражательная способность псевдовитринита меньше, чем у витринита. На поздних стадиях происходит замедление темпов роста отражательной способности у псевдовитринита, в то время как, у витринита темпы роста наоборот увеличиваются [Фомин А.Н., 1987 г.; 123].

Кроме всех вышеперечисленных микрокомпонентов РОВ в осадочных толщах часто обнаруживается органическое включение битуминит. Битуминит залегает в порах, трещинах и по периферии пустот. Исходным материалом для него послужили жидкие или пластичные нафтиды, которые мигрировали и остались в породе. Позже они преобразовывались вместе с ней, подвергались воздействию давлений, температур, закалялись и стали твердыми. По характеристикам битуминита можно судить о степени преобразованности породы после миграции. Но стоит учитывать, что миграция УВ - это длительный процесс и, как следствие, можно столкнуться с ситуацией расхождения данных в одном образце. Выделяются несколько разновидностей битуинита: диабитуминит, катабитуминит и метабитуминит.

ГЛАВА 3 Показатель преломления микрокомпонентов ОВ

Помимо отражательной способности в практике исследований широко используется такой параметр, как показатель преломления. Показатель преломления служит признаком вторичных изменений молекулярной структуры микрокомпонентов ОВ в ходе катагенеза. И как следствие, измеряя показатель преломления определенных микрокомпонентов, можно с достаточной точностью диагностировать степень преобразованности данного осадка, содержащего ОВ. Наиболее плавное изменение показателя преломления происходит у витринита, для него составлена шкала показалей преломления для всего катагенеза. Используются так же и другие микрокомпоненты, но в меньшей степени.

Точность метода обеспечивается таким свойством органического вещества, как прозрачность. Так, например, точно определяется степень преобразованности у стадий Б-Т, когда ОВ прозрачно в проходящем свете. Показатель преломления, конечно можно использовать и при изучении ОВ антрацитовой стадии, правда возникает проблема в диагностике микрокомпонентов, так как на высокой стадии преобразованности оптические свойства микрокомпонентов заметно сближаются. Интервал возможности определения оптических параметром зависит от используемой жидкости, так, например при использовании обычных иммерсионных жидкостей возможно определение стадий Б и Д. При использовании же высокопреломляющих иммерсионных жидкостей возможно диагностировать стадии Б - А включительно. Если же использовать сплавы йодидов мышьяка, сурьмы с пиперином, можно проводить определение стадий Г - Т.

Измерения проводятся на тонко измельченной крошке образца. Получают его простым механическим извлечением из породы с последующим измельчением, или же путем химической экстракции.

Изучение проводится образом, сходным с измерением отражающей способности, то есть сравнительным методом. Для этого на предметное стекло микроскопа помещается несколько углистых частиц и плавно распределяется по площади стекла так, чтобы частицы не соприкасались и не накладывались; а сверху накрывается другим стеклом. В полость между стеклами помещается жидкость с предполагаемым показателем преломления образца. Если визуальное определение не уверенное, то целесообразно приготовление нескольких препаратов с разными жидкостями.

Для определения высоких степеней преобразованности используются сплавы, для приготовления препаратов необходимо расплавить вещество и поместить в полученный расплав частицы вещества. Собственно определение аналогично определению в иммерсионных жидкостях. Оно основано на таком явлении, как полоска Беке, это тонкая светлая каемка, вокруг исследуемого препарата, появляется она на границе двух сред с разными показателями преломления. Для проведения измерения необходимо настроить резкость микроскопа и найти полоску Бекке, а после этого плавно отодвигать тубус микроскопа при этом полоска будет перемещаться в сторону той среды, которая имеет больший показатель преломления. Если полоска перемещается в сторону жидкости от образца, тогда он имеет больший показатель преломления, и наоборот. Так, поочередно сравнивая показатель преломления образца с показателями известных жидкостей, можно добиться полного исчезновения полоски, тогда можно сказать, что показатель преломления равен эталонному.

ГЛАВА 4. Визуальная диагностика стадий катагенеза

Для более качественной и быстрой оценки стадии катагенеза, необходимо перед количественной точной оценкой проводить качественную приблизительную оценку преобразованности ОВ. Обычно это проводится по визуальным признакам, таким, как цвет в проходящем и отраженном свете, сохранность анатомического строения, рельеф а так же цвет и интенсивность свечения в ультрафиолетовых лучах. Несмотря на сохранение особенностей исходного растительного материала микрокомпонентов, каждый из них в ходе карбонизации изменяет свои оптические, химические и физические свойства. Но происходит это с различной скоростью, некоторые реагируют очень сильно. Поэтому для визуально диагностики необходимо использовать в основном липоидные компоненты, которые очень чувствительны к изменению условий среды. Что очень сказывается на их цвете, и как следствие, можно судить о степени преобразованности по цвету микрокомпонентов.

Разные параметры микрокомпонентов по разному реагируют на процесс преобразования, так, например, анатомическая структура микрокомпонентов постепенно теряется. На стадиях Б - Ж она отчетлива, позже постепенно затушевывается. В ВТО же время, в процессе увеличения стадии катагенеза, растет рельеф микрокомпонентов. Так же по ходу катагенеза у микрокомпонентов растет анизотропия. В общем, анизотропия некоторых микрокомпонентов нарастает в процессе преобразования. Анизотропия, вообще - это свойство каких-либо веществ обладать различными значениями некоторых свойств в различных направлениях, кристаллографических, либо же просто связанных со структурой вещества, это проявляется прежде всего в цвете вещества. Цвет изменяется в зависимости от направления колебаний поляризованного света, проходящего через вещество. Это явление названо плеохроизмом. Наблюдается оно в проходящем свете при одном николе. При использовании отраженного света анизотропия образца проявляется в его поляризации.

Для каждой стадии преобразования ОВ существует определенный набор визуальных признаков и по ним можно довольно легко диагностировать стадии катагенеза. Рассмотрим их подробнее.

Для стадии Б характерно то, что липоидные компоненты при одном николе почти белые, с легким желтоватым оттенком. Витринит оранжево-красный или коричневый с красным оттенком, с трещинами усыхания и хорошо сохранившейся структурой, по которым можно определить принадлежность вещества к определенному типу растительной ткани. В скрещенных николях липоидные компоненты практически однородны или дают слабое просветление. Отдельные частицы практически не упорядочены, споры слабо сплющены. В отраженном свете витринит серый, лейптинит имеет коричневато-серые тона, споры хорошо видны и окружены характерным ободком.

Для стадии Д характерна большая упорядоченность в расположении растительных остатков. Лейптинит светло-желтый, анизотропный. Легко различаются гелифицированные компоненты, их цвет изменяется от красновато-желтого до коричневато-красного. На этой стадии отчетливо начинает проявляться анизотропия ОВ В структурных витринитах проявляется тканевая анизотропия. Часто в скрещенных николях можно проследить структуру тканей исходного вещества. Если наблюдать образцы в отраженном свете, то ОВ в целом изотропно, при одном николе состав и структура его четко различимы. Кутинит коричневато - серый и хорошо различим. Витринит имеет серые тона различной интенсивности.

На стадии Г увеличивается степень упорядоченности, ориентировка микрокомпонентов параллельно напластованию. Хорошо различимы компоненты с тканевой структурой, сеточное строение. Наиболее важным диагностическим признаком является цвет оболочек спор, по этому признаку удается разделить данную стадию не подстадии. На подстадии Г1 они золотисто - желтые и реже соломенно - желтые, на Г2 желтые, на Г3 темно-желтые. Для витринита характерна красновато-желтая окраска. В отраженном свете Лейптинит коричневато-серый или серый, споры рельефны, витринит серый.

Стадия Ж характеризуется оранжевым цветом спор как в проходящее, так и в отраженном свете. По оттенкам оранжевого цвета, стадию Ж можно разделить на три подстадии: Ж1 характеризуется желтым оттенком в цвете, на Ж2 они оранжевые и темно-оранжевые, на Ж3 с красноватым оттенком. В отраженном свете для спор характерны бежево-серые тона на стадии Ж1, песочно-серые на стадии Ж2 и светло-серые на Ж3.

В стадии К выделяют две подстадии К1 И К2. На стадии К1 лейптинит имеет красноватые тона в проходящем свете, в отраженном он серовато-белый. На подстадии К2 при проходящем свете видны лишь единичные коричневые фрагменты споринита или кутинита. Структура гелифицирванного вещества в основном монолитна без отчетливого проявления структуры исходного вещества.

Стадия ОС по количественным показателям разделяется на две подстадии: ОС1 и ОС2, но они практически неразличимы по петрографическим признакам. В общей массе удается различить отдельные остатки кутинита или спор. Все детали строения ОВ хорошо видны в основном в проходящем свете. При скрещенных николях хорошо видна структура вторичная, иногда первичная различных видов витринита.

Стадия Т так же как и ОС разделяется на две подстадии. На стадии Т видны редкие липоидные компоненты, имеющие коричневатую окраску. Наблюдается отчетливый плеохроизм, который лучше заметен на подстадии Т2, чем на подстадии Т3. В органической массе наблюдаются лишь единичные светлые штрихи и нитевидные обрывки.

На стадии ПА в тонких шлифах при одном николе гелифицированные компонеты красновато-коричневые, бурые, реже черные. Лейптинит имеет слегка коричневатые тона. Споринит и кутинит в скрещенных николях розовато-желтые. Наиболее анизотропны фрагменты витринита и некоторые образования белого цвета, по форме напоминающие лейптинит. На стадии А в тонких полированных шлифах органическое вещество просвечивает лишь местами. В отраженном свете благодаря отчетливой анизотропии многие детали в строении отдельных микрокомпонентов сравнительно хорошо различимы как при одном, так и при двух николях. В ходе катагенеза изменяется также окраска микрокомпонентов группы альгинита. Наиболее закономерно это происходит у талламоальгинита, сохранившихся остатков водорослей. Так, например, в интервале стадий катагенеза от Б до Ж его цвет в проходящем свете. Далее с ростом катагенеза у него появляется сероватый оттенок. На стадии Б у талламоальгинита отмечается яркая люминисценция зеленовато-желтого, реже голубого цвета. На стадиях Д и Г ее интенсивность заметно ослабевает и на стадии Ж уже не фиксируется. В отраженном свете окраска талламоальгинита изменяется от темной на начальных этапах катагенеза, до серо-белой в антрацитах.

В общем наиболее четко реагируют на изменение термобарических условий липоидные компоненты. Окраска гелифицированных и водорослевых компонентов - мне показательный признак. В процессе катагенеза. Каждый из микрокомпонентов остается индивидуальным сохраняет определенные особенности. Но физические свойства и другие характеристики претерпевают существенные изменения. Общая последовательность изменения углепетрографических показателей отражена в табл 1.

Стадия катагенеза

Анизотропия

При одном николе

При скрещенных николях

витринит

лейптинит

витринит

лейптинит

Темный, темно-серый

Темно-серый, разных оттенков

Параметры спектра электронного парамагнитного резонанса (ЭПР). Сверхтонкая структура спектров ЭПР. Факторы, влияющие на целесообразность использования метода, особенности его применения. Определение генезиса рассеянного органического вещества и нефти.

реферат , добавлен 02.01.2015

Схема образования битумов по Успенскому, Радченко, Козлову, Карцеву. Средний элементарный состав живых организмов и каустобиолитов разной степени преобразования. Транспортировка и накопление органического вещества. Диаграмма типов керогена Д. Кревелена.

реферат , добавлен 02.06.2012

Тектонические элементы поверхности фундамента и нижнего структурного яруса осадочного чехла. Литолого-стратиграфическое распределение запасов нефти. Нефтегазоносность Припятского прогиба. Геохимические особенности органического вещества, нефтей и газов.

курсовая работа , добавлен 27.12.2013

Оптические свойства вод озер. Влияние прозрачности на световой режим. Краткая характеристика основных мест обитания организмов в озере. Круговорот органического вещества и биологические типы озер. Биомасса, продуктивность и схема зарастания водоема.

курсовая работа , добавлен 20.03.2015

Оптические свойства вод озер. Влияние прозрачности на световой режим. Краткая характеристика основных мест обитания организмов в озере. Круговорот органического вещества. Биомасса и продуктивность озера. Схема его зарастания. Биологические типы озер.

курсовая работа , добавлен 24.03.2015

Определение роли, которую играют живые вещества в формировании коры выветривания - рыхлого продукта изменения горных пород, образующегося под почвой, в том числе, и за счет поступающих из нее растворов. Функции живого вещества в процессе выветривания.

доклад , добавлен 02.10.2011

Тектоническое районирование и литолого-стратиграфическая характеристика фундамента и осадочного чехла Баренцевоморского региона. Факторы и шкала катагенеза, используемые при оценке катагенетических изменений исследуемых отложений Адмиралтейского мегавала.

дипломная работа , добавлен 04.10.2013

Классификация органических вяжущих веществ: битум природный, нефтяной; дегти каменноугольные, сланцевые, торфяные, древесные; полимеры полимеризационные, поликонденсационные. Особенности их состава, структуры, свойств. Компаундированные вяжущие вещества.

реферат , добавлен 31.01.2010

Моделирование массопереноса вещества в условиях, близких к природным, для объяснения некоторых геологических процессов. Изготовление лабораторного оборудования для проведения экспериментов по изучению особенностей массопереноса в вязких жидкостях.

презентация , добавлен 25.06.2011

История практического получения органического ила растительной природы. Содержание вулканической и космической гипотез абиогенной теории происхождения нефти. Описание стадий осадконакопления и преобразования органических остатков в горное масло.

Знание основ процессов углеобразования и условий применимости твёрдого топлива в металлургии позволяет гибко управлять технологическими процессами и экономической эффективностью производства чугуна и стали.

Использование горючих ископаемых в металлургии насчитывает на одну сотню лет. Исходный материал и условия образования ископаемых топлив стали причиной их видового разнообразия. Современная металлургия предъявляет высокие требования к качеству сырья, в т.ч. к коксу и вдуваемым добавкам. Знание основ процессов углеобразования и условий применимости твёрдого топлива в металлургии позволяет гибко управлять технологическими процессами и экономической эффективностью производства чугуна и стали.

Состав и структура исходного растительного материала

Сложившаяся к настоящему времени теория образования углей подразумевает происхождение горючих ископаемых из растительной массы, прошедшей определённый метаморфизм в течение длительного периода времени.

В образовании исходного материала для всех горючих ископаемых принимали участие разнообразные растения, начиная с одноклеточных водорослей и заканчивая деревьями. По современным представлениям в структуре растений выделяются вещества следующих химических групп: жиры, воски, смолы, углеводные комплексы (целлюлозы и пектиновые вещества), лигнин, белки.

Жиры широко распространены в растениях: в них насчитывают около 1700 различных видов жиров. По химическому составу жиры являются сложными эфирами трёхатомного спирта – глицерина – и предельных и непредельных кислот жирного ряда (монокарбоновых, с нормальной углеродной цепью и чётным числом атомов углерода). Жиры не растворимы в воде, но легко растворяются в диэтиловом эфире, сероуглероде, бензине, ароматических углеводородах.

Воски – это сложные эфиры высших монокарбоновых кислот и высших первичных одноатомных спиртов нормального строения. Воски в растениях покрывают тончайшим слоем стебли, листья, оболочки спор, предохраняя их от внешних воздействий. Воски имеют высокую для органических материалов температуру плавления (70...72 °С). Они представляют собой исключительно устойчивые вещества и благодаря своей стабильности почти всегда присутствуют в углях.

Смолы . Растительные смолы представляют собой смесь различных органических соединений (кислот, сложных эфиров, спиртов, фенолов и углеводородов). Смолы присущи высшим растениям, в которых они находятся в растворах эфирных масел (бальзамы). В растениях бальзамами заполнены смоляные ходы. При повреждении растения обильно выделяются смоляные концентраты, которые быстро густеют на воздухе в результате испарения эфирных масел, а также вследствие частичной полимеризации смоляных веществ. Такие сгустки твёрдой смолы доходят до нас в виде смоляных конкреций, вкрапленных в органическую часть угля.

Целлюлоза (С6Н10О5) – основной строительный материал растительных тканей, придающий растениям механическую прочность.

Гемицеллюлозы (гетерополисахариды) являются сложными органическими соединениями, при гидролизе которых получаются простейшие сахара (пентозы, гексозы и т.д.).

Пектиновые вещества – выполняют опорную функцию в стенках растительных клеток, молодых плодах и тканях.

Лигнин представляет собой полимер ароматической природы. Участвует в формировании клеточных стенок растений. Образование лигнина характерно только для сосудистых растений. В период эволюции (выход растений на сушу) сосудистые растения приобрели свойство вырабатывать ферменты, способные образовывать лигнин из углеводов. Лигнин играет роль цементирующего вещества, склеивающего пучки целлюлозных волокон, и составляет, таким образом, основную часть древесины. Примерное содержание лигнина в некоторых растениях (% масс.) составляет: бук – 22, ель – 27, древовидная люцерна – 23, плаун – 37, кукушкин лён – 38, сфагнум (особый род мха) – 4,5.

Белки – природные продукты макромолекулярного строения, превращающиеся при гидролизе в альфа-аминокислоты. Одно из важнейших свойств белков, отсутствующее у других растительных химических групп – специфичность.

Элементный состав углеобразователей приведён в табл. 1:

Таблица 1. Элементный состав углеобразователей

Количественное содержание химических групп веществ в различных видах растений приведено в табл. 2.

Таблица 2. Содержание в растениях основных групп химических веществ, % (масс.)

Исходный растительный материал и его превращения в ходе процессов углеобразования

В зависимости от состава исходного растительного материала угли делятся на гумусовые, сапропелитовые, липтобиолитовые и смешанные.

Гумусовые угли образуются из наземных растений.

Липтобиолитовые угли образуются также из наземной растительности, но из наиболее стойких в естественных условиях компонентов растений – покровных тканей (кутикулы, кора, смолы, споры, пыльца).

Сапропелитовые угли образуются исключительно из скоплений водорослей – зелёных, сине-зелёных.

Смешанные угли представляют собой продукт совместных превращений различной наземной и водной растительности.

Наряду с исходным материалом на состав и свойства углей оказывают влияние и физико-географические условия, при которых происходило накопление растительного материала. Это понятие охватывает ландшафтную обстановку, подразделяемую на озёрную, болотную, морскую, лагунную и т.д., и физико-химические (гидрохимические и микробиологические) её особенности, включающие солёность, проточность, застойность и др.

Важнейшим условием, обеспечивающим возможность формирования каменного угля, является отсутствие доступа к исходному материалу кислорода воздуха. Условия формирования и виды углей приведены в табл. 3.

Таблица 3. Условия формирования и виды углей

Исходное вещество углей (основная масса)

Условия формирования на стадии диагенеза

Классификация углей

Лигнин и целлюлоза

Восстановительная среда застойных грунтовых вод, обогащённых гуминовыми кислотами.

Щелочная фенольная среда. Присутствие сфагнума.

Гумусовые угли

Кларен (витрен, микринит, фюзен)

Дюрен (от лат. duris (твердый)

Полосчатый уголь (Сплинт или “антраксилон” от антракс (уголь) и ксилон (дерево)

Кутикулы

Липтобиолитовые угли

Неполосчатый уголь (“аттритус”

лат. attritys (истёртый)

Сапропелиты (останки низших растений, водоросли – от греч. sapros– (гнилой) и pelos– (грязь)

Накопление в замкнутых озёрных и лагунных водоёмах.

Сапропелитовые угли

Кеннель, Богхед, Торбанит, Сланцы

Коксующимися могут быть только гумусовые, полосчатые угли, т.е. клареновые угли:

  • кларен (лат. clarus – блестящий) – уголь, слагаемый богатыми углеродом и микропримесями составляющими: витреном, микринитом и фюзеном.
  • витрен, витрит, витринит (лат. vitrum – стекло) – чёрная блестящая, богатая углеводородами растительная ткань – основной носитель спекающих свойств. Образует "линзы" и "слои" в основной массе угля.
  • микринит – чёрный матовый компонент из спор растений.
  • фюзен, фюзинит (франц. fusain – линза) – чёрный порошкообразный, подобный древесному углю с шелковистым блеском.

Классификация углей по степени метаморфизма

Различия в исходном материале, степени обводнённости торфяников, химическом составе среды и фациальных обстановках осадко- и торфонакопления, обусловливающие направленность и интенсивность протекания окислительных и восстановительных микробиологических процессов, создали в торфяной стадии основу для образования различных генетических типов углей. Торфообразование и торфонакопление завершались перекрытием торфяника осадками, образующими породы кровли. Происходившие при относительно невысоких температурах и давлении диагенетические (уплотнение, дегидратация осадков, газовыделение) и биохимические процессы восстановительного характера приводили к превращению торфа в бурый уголь.

Угли, включающие слабо разложившиеся древесные остатки, сцементированные землистым углём, называемые лигнитами.

Бурые угли – одна из разновидностей углей – имеют широкое распространение. Доля запасов бурых углей и лигнитов в мировых запасах углей – 42%. Неглубокое залегание и большая мощность угольных пластов позволяют широко применять открытый способ разработки, экономические и технические преимущества которого во многом компенсируют относительно низкое качество сырья.

В результате длительного воздействия повышенных температур и давления бурые угли преобразуются в каменные угли, а последние – в антрациты. Необратимый процесс постепенного изменения химического состава (прежде всего в направлении обуглероживания), физических и технологических свойств органического вещества в преобразованиях от торфа до антрацита называются углефикацией. Углефикация на стадиях превращения бурых углей в каменные и последних в антрациты, обусловленная происходящими в земной коре процессами, носит название метаморфизма углей. Выделяют три основных вида метаморфизма углей:

  • региональный, вызванный воздействием внутренней теплоты Земли и давления перекрывающей толщи пород при погружении углей в глубь земной коры;
  • термальный – под влиянием тепла, выделяемого магматическими телами, перекрывшими или внедрившимися в угленосную толщу, либо в подстилающие её отложения;
  • контактовый – под воздействием тепла изверженных пород, внедрившихся в угольные пласты или пересекших их непосредственно; проблематично признаётся возможным метаморфизм углей за счёт повышения температур в областях проявления тектонических сжимающих и скалывающих) усилий – динамометаморфизма.

Структурно-молекулярная перестройка органического вещества при метаморфизме углей сопровождается последовательным повышением в них относительного содержания углерода, снижением содержания кислорода, выхода летучих веществ; в определённых закономерностях с экстремальными значениями на средних стадиях углефикации изменяются содержание водорода, теплота сгорания, твёрдость, плотность, хрупкость, оптические, электрические и др. физические свойства углей. Для определения этих стадий используются: выход летучих веществ, содержание углерода, микротвёрдость и др. особенности химического состава и физических свойств углей. Наиболее эффективен метод определения стадии углефикации по отражательной способности витринита.

Каменные угли на средних стадиях метаморфизма приобретают спекающие свойства – способность гелифицированных и липоидных компонентов органического вещества переходить при нагревании в определённых условиях в пластического состояние и образовывать пористый монолит – кокс. Относительное количество запасов углей с высокой спекающейся способностью составляет 10...15% от общих запасов каменных углей, что связано с более высокой интенсивностью преобразования органических вещества на средних стадиях метаморфизма. Спекающиеся угли возникают при температурах примерно от 130 до 160...180 °С при общем диапазоне температур, обусловливающих протекание метаморфизма углей, от 70...90 °С для длиннопламенных углей до 300...350 °С для антрацитов. Наиболее высококачественные спекающиеся угли формировались в бассейнах, испытавших региональный метаморфизм при глубоком погружении угленосной толщи. При термальном и контактовом метаморфизме в связи с резким изменением температур и невысоким давлением преобразование органического вещества протекает неравномерно и качество углей отличается невыдержанностью технологических свойств. Породы угленосных формаций наряду с метаморфизмом углей испытывают катагенетические преобразования.

В зонах аэрации и активного действия подземных вод вблизи поверхности Земли угли подвергаются окислению. По своему воздействию на химический состав и физические свойства углей окисление имеет обратную направленность по сравнению с метаморфизмом: угли утрачивают прочностные свойства (до превращения их в сажистое вещество) и спекаемость; в них возрастает относительное содержание кислорода, снижается количество углерода, увеличиваются влажность и зольность, резко снижается теплота сгорания. Глубина окисления углей в зависимости от современного и древнего рельефа, положения зеркала грунтовых вод, характера климатических условий, вещественного состава и метаморфизма углей колеблется от 0 до 100 м по вертикали.

Различия в вещественном составе и степени метаморфизма обусловили большую дифференциацию технологических свойств углей. Для установления рационального направления промышленного использования углей подразделяются на марки и технологические группы; в основу такого подразделения положены параметры, характеризующие поведение углей в процессе термического воздействия на них. Границей между бурыми и каменными углями принята высшая теплота сгорания рабочей массы беззольного угля, равная 5700 ккал/кг (23,86 МДж).

Ведущий показатель при использовании углей в энергетических целях – низшая теплота сгорания – в пересчёте на рабочее топливо колеблется в пределах (ккал/кг): 2000...5000 (8,372...20,930 МДж) для бурых, 4100...6900 (17,162...28,893 МДж) для каменных углей и 5700...6400 (23,86...26,79 МДж) для антрацитов. Пониженная величина этого показателя у бурых углей объясняется низкой степенью углефикации органического вещества, слабой уплотнённостью материала и, соответственно, высокой их естественной влажностью, изменяющейся в пределах 15...58%. По содержанию рабочей влаги бурые угли подразделяются на технологические группы: Б1 с Wp > 40%, Б2 с Wp 30...40% и Б3 с Wp < 30%.
В основу промышленной маркировки каменных углей положены показатели, характеризующие результаты их высокотемпературной сухой перегонки (коксования): выход летучих веществ, образующихся при разложении органической массы (частично неорганического материала – сульфидов, карбонатов, гидратированных минералов), и характеристика беззольного горючего остатка – кокса по спекаемости. Весовой выход летучих веществ из углей последовательно снижается с повышением степени углефикации от 45 до 8% у каменных углей и до 8...2% у антрацитов.

В СССР спекаемость углей определяется в лабораторном аппарате пластометрическим методом, предложенным в 1932 советскими учёными Л. М. Сапожниковым и Л. П. Базилевич, по толщине образующегося при нагревании пластического слоя (у) с учётом усадки (х), выраженных в мм. Наибольшей спекающей способностью характеризуются каменные угли средних стадий углефикации с толщиной пластического слоя 10...35 мм (марок К и Ж). С понижением и увеличением степени метаморфизма спекаемость углей снижается. Угли марок Д и Т характеризуются слабоспекшимся порошкообразным нелетучим остатком. В табл. 4 приведены величины основных показателей качества углей на различных стадиях углефикации применительно к маркам согласно ГОСТ.

Таблица 4. Основные показатели качества углей марочного состава

Марки угля

Буквенное обозначение марок

Средние величины показателей для углей, состоящих преимущественно из витринита

Отражательная способность витринита в масляной иммерсии R0, %

Выход летучих веществ Vг, %

Теплота сгорания Qгб, ккал/кг

41 и более

76 и менее

Длиннопламенные

39 и более

Коксовые

Отощённо-спекающиеся

Антрациты

91 и более

Кроме указанных в таблице, в некоторых бассейнах выделяются промежуточные марки: газовые жирные (ГЖ), коксовые жирные (КЖ), коксовые вторые (K2), слабоспекающиеся (СС). Угли марок Г, ГЖ, Ж, КЖ, К и ОС подразделяются на технологические группы по спекающей способности; для указания технологической группы к буквенному обозначению марки прибавляется цифра, указывающая низшее значение толщины пластического слоя (у) в данных углях, например Г6, Г17, КЖ14 и т.п. Для углей конкретных бассейнов величины классификационных показателей (VГ и у) регламентируются ГОСТом. Для получения металлургического кокса используется смесь различных марок углей – шихта, основным компонентом которой являются угли с высокими спекающими свойствами.

Подразделение углей на бурые, каменные и антрациты принято в большинстве стран Европы (в некоторых – с выделением дополнительно лигнитов). В основу принятой в 1956 Европейской экономической комиссией ООН Международной системы классификации каменных углей также положены выход летучих веществ для углей с V >33% – высшая теплота сгорания влажной беззольной массы, спекающая способность и коксуемость. Тип угля обозначается кодовым трёхзначным номером, первая цифра которого указывает класс угля (по летучим или теплоте сгорания), вторая – группу (по спекающей способности, определённой методом Рога или индексом вспучивания в тигле), третья – подгруппу (по коксуемости, определённой методами Одибер-Арну или Грей-Кинга). В США и некоторых других странах угли подразделяются на лигниты, суббитуминозные, битуминозные угли и антрациты; классификационными параметрами приняты: для лигнитов, суббитуминозных и битуминозных (с выходом летучих >31%) углей – теплота сгорания беззольной массы, для битуминозных с летучими <31% и антрацитов – выход летучих веществ и содержание связанного углерода.

Маркировка углей, отражая комплекс определённых технологических свойств разновидностей углей, используется как основной критерий в практике промышленного использования углей. Для конкретных направлений потребления устанавливаются дополнительные технические требования. Резкое снижение теплового эффекта сгорания угля и экономических показателей их использования за счёт балласта (золы и влаги) определяет необходимость брикетирования углей с высокой естественной влажностью и предварительного обогащения высокозольных углей. Предельная зольность углей, направляемых на слоевое сжигание, не должна превышать 20...37%, на пылевидное сжигание – 45%.

Для коксования используются малозольные (обогащенные) спекающиеся каменные угли, в которых лимитируется содержание серы и фосфора. Для полукоксования, газификации, получения жидкого топлива, горного воска и др. направлений потребления нормируются спекаемость, сернистость, зольность, кусковатость, термическая стойкость, содержание смол, битумов и др. показатели качества.

Основные угольные бассейны РФ – источники коксующихся углей

Донецкий бассейн. Один из наиболее крупных европейских угольных бассейнов. На территории Ростовской области находится только крайняя восточная часть бассейна, где распространены преимущественно антрациты. Коксующиеся угли имеются в трёх районах из семи – Каменско-Гундоровском, Белокалитвенском, Тацинском – и характеризуются лёгкой и средней обогатимостью. Угли Донецкого бассейна характеризуются высоким содержанием серы.

Кузнецкий бассейн . Находится на территории Кемеровской и Новосибирской областей и занимает площадь 27 тыс. км2 (110 х 350 км). Из 25 геолого-промышленных районов коксующиеся угли развиты в 20. Обогатимость углей – лёгкая и средняя при выходе концентрата от 70 до 90%. Угли Кузнецкого бассейна характеризуются низким содержанием серы. В бассейне добывают все марки коксующихся углей. Благоприятные горно-геологические условия залегания углей, небольшая глубина их отработки делают использование этих углей экономически целесообразным практически на территории всей России.

Печорский бассейн. Входит в Северный район и находится на территории Республики Коми и Ненецкого автономного округа Архангельской области. Площадь бассейна 90 км2. Коксующиеся угли распространены на Воркутском, Воргашорском и Хальмеръюском месторождениях. Угли в основном среднеобогатимые (выход концентрата составляет от 70 до 85% (масс.), угли марок ГЖО, К, Ж – легкообогатимые (выход концентрата 85-93% масс.). Жирные и газовые жирные угли Воркутинского и Воргашорского месторождений способны принимать в качестве отощающей добавки до 50% отощенных углей со значительным увеличением прочности кокса. Угли марки К Хальмеръюского месторождения при коксовании дают прочный металлургический кокс высокого качества.

Карагандинский бассейн. Является источником коксующихся углей для предприятий Востока России, находится в Центральном Казахстане на территории одноименной области. Площадь его составляет 3000 км2 (30 х 100 км). Угли труднообогатимые, т.к. минеральные составляющие очень тонко распределены в органической массе угля. Выход концентрата составляет от 15 до 65% (масс.).

Показатели качества коксующихся углей

Качество углей определяется по их технологическим и петрографическим показателям.

Выход летучих веществ (V) – продукты за исключением влаги, выделяющиеся из угля в виде газа и пара. Образуются при разложении угля в условиях нагрева без доступа воздуха. Определяются на сухое (dry – Vd) или сухое беззольное состояние (dry ash free – Vdaf). В совокупности со спекаемостью он определяет пригодность углей для коксования. Именно этот показатель является ключевым при составлении угольной шихты и рассмотрении возможности замещения углей в шихте.

Зольность (A) – содержание негорючего неорганического материала в угле. Определяется как остаток, образующийся при нагреве угля в результате сгорания всей горючей массы. Определяется на сухое состояние (dry – Ad).

Сера (S) – содержание серы в угле. Содержится в виде сульфидов, сульфатов, органических соединений и элементарной серы. Определяется на сухое состояние (dry – Sd).

Витринит (Vt) – один из видов органического вещества (мацералы), образующего массу угля. Кроме витринита различают липтинит и инертинит. Витринит является наиболее ценным мацералом.

Показатель отражения витринита (R0) – отражательная способность витринита является показателем степени метаморфизма углей (чем больше, тем старше уголь). Для характеристики степени углефикации определяют средний показатель отражения витринита в обыкновенном монохроматической свете.

Толщина пластического слоя (y) – один из основных показателей спекаемости углей, характеризующий оценку качества коксующихся углей. Определяется как максимальное расстояние между поверхностями раздела «уголь – пластическая масса – полукокс», определяемое при пластометрических испытаниях.

Связанный углерод (FС) – часть углерода, остающаяся при нагревании угля в закрытом сосуде до полного удаления летучих веществ (т.е. это нелетучая часть за вычетом золы).

Общая влага (TM) – влага, содержащаяся в ископаемом углей, включая свободную, поверхностную и связанную. При коксовании влага отрицательно влияет на насыпную плотность угольной шихты, расход электроэнергии на дробление и тепла на коксование; при влажности более 8% затрудняется транспортировка шихты в углеподготовительных цехах.

Тип кокса по Грей-Кингу (Gray King coking index) – данный показатель является основной характеристикой коксуемости углей; тип кокса по Грей-Кингу определяется по эталонной шкале: A, B, C, D, E, F, G1, G2,...,G12; тип кокса "A" свидетельствует о том, что уголь не коксуется, типы "B", "C", "D" говорят о низкой коксуемости,..., типы "G5" – "G12" свидетельствуют о высоких коксующихся свойствах углей, причём, чем выше число, тем лучше коксуемость.

Индекс свободного вспучивания (Crucible Swelling Number (CSN)/Free Swelling Index (FSI)) – основная характеристика, по которой оценивается спекаемость углей во всем мире; спекаемость является одним из важнейших классификационных показателей для углей, используемых для коксования; спекаемость угольной шихты должна быть достаточной для обеспечения высокой прочности коксового вещества (как правило, чем выше значение CSN при прочих равных условиях, тем лучше).

Максимальная текучесть по Гизелеру (Gieseler Max Fluidity) – хорошо спекающиеся угли определяются по методу Гизелера; данный параметр очень важен для коксующихся углей, т.к. низкотекучие угли не способны самостоятельно участвовать в процессе коксования (требуют добавки высокотекучих углей для связки); для сравнения данного параметра используют логарифмическую (порядковую шкалу).

Индекс размолоспособности (Hardgrove Index) – эмпирический индекс, достигаемый в результате измельчения пробы угля. Измельчение узкоклассифицированного угля массой 50 г проводится в кольцевой шаровой мельнице в течение 60 оборотов. Индекс определяется на основе гранулометрического состава измельчённого угля.

Классификация коксующихся углей

В России и СНГ действует Единая классификация углей по ГОСТ 25543-88. Согласно этой классификации уголь разделяется на следующие марки:

  • Б – бурый;
  • Д – длиннопламенный;
  • ДГ – длиннопламенный газовый;
  • Г – газовый;
  • ГЖО – газовый жирный отощенный;
  • ГЖ – газовый жирный;
  • Ж – жирный;
  • КЖ – коксовый жирный;
  • К – коксовый;
  • КО – коксовый отщенный;
  • КСН – коксовый спекающийся низкометаморфизированный;
  • КС – коксовый слабоспекающийся;
  • ОС – отощенный спекающийся;
  • ТС – тощий спекающийся;
  • СС – слабоспекающийся;
  • Т – тощий;
  • А – антрацит.

Мировая классификация разделяет угли на Hard Coking Coal (HCC), Semi-soft Coking Coal (SSCC), Pulverised Coal for Injection (PCI), Thermal Coal/Steam Coal (рис. 1):

Рисунок 1 - Мировая классификация углей

Соотношение мировых резервов углей и направления их использования в зависимости от содержания углерода и влаги приведено на рис. 2:

Рисунок 2 - Соотношение мировых резервов углей

ПУТ – пылеугольное топливо

История развития технологии вдувания пылеугольного топлива

Технология доменной плавки с использованием пылеугольного топлива известна с 1831 г. Промышленное применение технологии вдувания ПУТ началось лишь в середине XX века, а широкое распространение данная технология получила в 80-е годы XX века. Затяжной период освоения технологии ПУТ можно объяснить необходимостью разработки сложного и дорогостоящего оборудования для подготовки и вдувания ПУТ, а также успешной конкуренцией со стороны мазута и природного газа.

Первый патент на вдувание измельчённого твёрдого топлива в доменную печь через фурмы выдан в Англии в 1831 г. Аналогичный патент выдан в Германии в 1877 г. Данные о начале практического применения ПУТ разнятся: по одним источникам первые попытки вдувания были предприняты в 1840 г., по другим первое вдувание измельчённого угля в шахтную печь было осуществлено в Канаде при плавке черновой меди в 1911 г.

Масштабные экспериментальные работы по вдуванию ПУТ начались в 50...60-е годы ХХ века в США. В то время мазут выполнял ведущую роль в технологии вдувания топлива.
В 1955 г. в СССР на металлургическом заводе им. Дзержинского были проведены опыты по вдуванию угольной пыли через фурму в доменную печь объёмом 427 м3 при выплавке ферросилиция. Эти опыты положили начало исследованиям доменного процесса с применением пылевидного топлива на промышленных доменных печах СССР.

Только после энергетического кризиса в 70-е годы обратили внимание на уголь как на более разумную экономическую альтернативу. Применяемая в 70-х годах ХХ века практика вдувания мазута и других производных нефти обеспечивала расход кокса на уровне 400 кг/т чугуна. Второй нефтяной кризис заставил отказаться от вдувания жидких агентов и резко увеличил потребление кокса.

80-е годы стали периодом быстрого роста строительства установок по вдуванию ПУТ в мире, в основном в Европе и Азии. В Северной Америке популярным стало вдувание природного газа совместно с другими видами жидкого и твёрдого топлива. К концу 80-х вдувание ПУТ значительно потеснило другие виды топлива и в США.

Вследствие противоположной направленности воздействия процессов вдувания ПУТ и природного газа на ход доменной печи стало очевидными совместить вдувание этих видов топлива для более мягкого влияния на ход печи. В США данная технология обрела широкое применение (табл. 5):

Таблица 5. Использование различных вдуваемых добавок в доменных печах США

Популярность такого решения объясняется тем, что комбинация двух материалов обеспечивает при менее строгих условиях максимально возможную экономию кокса.
К настоящему времени в результате совершенствования технология вдувания ПУТ нашла широкое практическое применение. Использование технологии вдувания ПУТ позволяет снизить удельный расход кокса до 325...350 кг/т чугуна. Лидером по удельному расходу ПУТ являются Нидерланды (рис. 3, ). В последнее время технология активно развивается в Китае ().

Рисунок 3. Уровень вдувания ПУТ

Необходимые условия успешной реализации технологии вдувания ПУТ

Для внедрения технологии вдувания ПУТ в доменную плавку необходимо выполнить комплекс следующих мероприятий:

  • улучшить качество кокса по показателю CSR до 62% и более;
  • снизить зольность шихты для коксования до 7,5%;
  • обеспечить высокую стабильность показателей качества шихты для коксования;
  • использовать для ПУТ угли с зольностью 6,0-8,5% и содержанием серы менее 0,5%;
  • обеспечить стабильность качества показателей используемых для ПУТ углей;
  • обеспечить стабильность качества компонентов железорудной шихты;
  • уменьшить содержание мелочи в железорудном сырье до 3...5%;
  • повысить температуру дутья до 1200...1250 °С;
  • увеличить содержание кислорода в дутье до 28...33%.

Параллельно сокращению расхода кокса при вдувании больших количеств ПУТ прежде всего возрастают требования к качеству кокса (см. раздел "Скачать/Вспомогательная литература" ), поскольку кокс является единственным твёрдым материалом ниже зоны когезии доменной печи и расходуется здесь с более медленной скоростью, т.е. подвергается более длительному воздействию высоких температур и веса столба шихты. В связи с этим кокс должен быть более прочным физически и устойчивым к химическому воздействию, чтобы обеспечить высокую газопроницаемость шихты.

Показатель прочности кокса после взаимодействия с углекислым газом (CSR – coke stretch reactivity) в значительной степени зависит от химического состава золы, который влияет на реакционную способность кокса.

Состав доменного шлака также оказывает влияние на эффективность вдувания ПУТ – исследователями обнаружен значительный сдерживающий эффект увеличения потерь давления, возникающий в результате использования железорудного сырья с низким содержанием Al2O3.

Особенности сгорания угольной пыли в фурменных очагах доменной печи

Наиболее важным определяющим требованием новой технологи является обеспечение полного сгорания топлива в пределах фурменной зоны доменной печи. Выход частиц пылеугольного топлива за пределы фурменной зоны вызывает снижение коэффициента замены кокса, ухудшение вязкости шлака и газопроницаемости нижней части доменной печи.
Полное сгорание частиц угольной пыли в фурменных очагах определяется фракционным составом угля, содержанием летучих, температурой фурменной зоны и содержанием кислорода в дутье.

На основе теоретических и практических изысканий показано, что в пределах фурменных зон могут полностью сгорать частицы менее 200...100 мкм. Негативной стороной снижения крупности вдуваемого угля является значительное повышение затрат на подготовку ПУТ, снижение производительности помольного оборудования, увеличение потерь угля и т.д.
Процесс сгорания частицы угля можно разделить на три стадии:

  1. нагрев и выделение летучих веществ;
  2. воспламенение летучих веществ и дегазация;
  3. горение углеродистого остатка и плавление неорганических элементов угля.

Первая стадия подразумевает нагрев частицы угля с температуры окружающей среды до 450 °C, протекает практически мгновенно и занимает не более 5% всего времени горения частицы. Время нагрева прямо пропорционально диаметру частицы и обратно пропорционально температуре вокруг частицы. Причём влияние диаметр частицы на скорость нагрева более значительно.

В реальности процесс дегазации и третья стадия – горение углеродистого остатка – проходят не строго последовательно, а накладываются друг на друга. Т.е., горение углеродистого остатка начинается до завершения процесса дегазации. Время горения определяется по формуле:

где ρ – плотность частицы, г/см3; d – диаметр частицы, мм; β – число переноса вещества (см/с), определяемое по уравнению Ранца и Маршалла; C_O2 – концентрация кислорода в газовом пространстве, моль/см3. Горение коксового остатка занимает значительную часть процесса, а время горения прямо пропорционально диаметру частиц, обратно пропорционально содержанию кислорода и на этой стадии не зависит от температуры окружающей среды.

Представленное описание даёт качественную характеристику процесса горения частиц угля в фурменном очаге. В действительности процесс сгорания частиц носит более сложный характер – частицы в ходе горения меняют свою скорость относительно потока, изменяется размер и форма частиц, изменяются коэффициенты тепло- и температуропроводности. Температура газовой среды и содержание кислорода в ней также являются переменными величинами.

Надо отметить, что в фурменном очаге доменной печи условия для сгорания угольной пыли более благоприятные:

  • пыль подаётся в поток горячего дутья с температурой 1100...1250 °С, движущегося с высокой скоростью, вследствие чего пыль хорошо прогревается и диспергирует;
  • перед фурмами доменной печи имеется значительное пространство с низкой концентрацией циркулирующих кусков кокса и высокой концентрацией кислорода – в этом объёме развит факельный процесс горения угольной пыли;
  • несгоревшие пылинки, попадая на куски нагретого кокса с пленкой расплава могут прилипать к ним и, возвращаясь в фурменную зону сгорать.

Тем не менее, даже в таких условиях часть угольной пыли может не сгорать. Уменьшение размера угольных частиц и увеличение температуры сокращает время, необходимое для полного сгорания. При этом увеличение температуры оказывает большее влияние на полноту процесса, чем размеры частиц.

Произведённые расчёты показывают, что при вдувании в фурменную зону частиц размером 100 мкм и температуре дутья 1000 °С за время нахождения частицы в фурменной зоне (0,01...0,04 с) сгорит около 60...80% угля, а остальная часть достигнет границ зоны в виде дегазированных частиц. Дальнейшее поведение несгоревших частиц может развиваться по одному из сценариев:

  • вторичная газификация углерода пыли с помощью СО2;
  • окисление углерода угольной пыли при помощи оксидов жидкой фазы (FeO, SiO2, MnO и т.д.);
  • улавливание частиц шихтой с переходом в нижние слои доменной печи с последующим сгоранием в фурменных очагах.

Согласно расчётам вне зависимости от расхода вдуваемого угля 66% всего несгоревшего угля выносится через колошник, 23% расходуется в реакции газификации углерода, а остальные 11% попадают в центральную зону горна доменной печи.

Исследование состава колошниковой пыли на содержание углерода кокса и вдуваемого угля показало, что в сухой пыли содержание углерода составляет около 55%, из которого 90% – углерод кокса, а 10% – углерод полукокса из угольной пыли. Исходя из общего выноса колошниковой пыли, вынос угольной пыли через колошник составляет около 1% от вдуваемого угля.

Реакционная способность угля, низкое содержание золы, низкая температура воспламенения и минимальное содержание летучих веществ являются наиболее благоприятным сочетанием. Содержание серы и фосфора ограничивается конкретными условиями плавки и требованиями к содержанию этих элементов в чугуне. Таким образом, в отношении качественных характеристик ПУТ и параметров доменной печи эффективность его вдувания определяется следующими принципиальными особенностями:

  • применение для ПУТ низкозольных углей (5...14%);
  • измельчение ПУТ до 22...75 мкм;
  • приемлемый индекс размолоспособности угля (HGI);
  • равномерная подача ПУТ в фурмы доменной печи (неравномерность ±4...10%).

Мировая практика использования углей для ПУТ

Характеристики используемых в качестве ПУТ углей приведены в табл. 6.

Таблица 6. Характеристики углей для ПУТ

Производитель

Спекаемость

(индекс CSN)

Текучесть

по Гизелеру

Bayswater No3 PCI

South Blackwater PCI

Helensburgh Coal

Metropolitan PCI

Australian Premium Coals

Australian Premium Coals

Для целей вдувания используются угли с низкими коксующими свойствами – индекс CSNменее 4 ед., текучесть в пределах 200 ddpm. Содержание серы ограничено 0,6%, зольность – не более 10%.

Следует отметить, что для вдувания в основном используются угли с высоким содержанием летучих (32...38%) и угли с низкими летучими (15...20%):

Рисунок 4 - Содержание летучих веществ в углях для ПУТ

Угли с низким содержанием летучих веществ характеризуются высоким содержанием углерода, что в значительной степени увеличивает коэффициент замены кокса. В то же время, уголь с высоким содержанием летучих имеет низкий коэффициент замены кокса, но обладает хорошей эффективностью при сгорании. Кроме того, использование для вдувания углей с высоким содержанием летучих веществ способствует протеканию восстановительной реакции благодаря более высокому содержанию водорода в таких углях.

Во многих случаях с целью улучшения технологической управляемости процесса применяют угольные смеси из высоко- и низколетучих углей с тем, чтобы регулировать содержание летучих веществ и зольность вдуваемого ПУТ. Кроме того, при совместном вдувании ПУТ и природного газа для экономической эффективности можно увеличивать долю высоколетучих углей в смесях в периоды повышения стоимости природного газа. Это позволяет частично компенсировать восстановительную способность образующихся газов за счёт водорода летучих веществ.

На кривой взаимосвязи между типом угля и пластическими свойствами угли для вдувания в качестве ПУТ (PCI) занимают крайние положения:

Рисунок 5 - Взаимосвязь между типом угля и пластическими свойствами

Такое положение углей для ПУТ напрямую отражается на их цене. Уголь PCI – категория неподходящих для коксования углей. Этот уголь уступает в цене премиальным маркам коксующихся углей (-31% в среднем за год). Но использование технологии вдувания ПУТ позволяет экономить дорогостоящий кокс, следствием чего является превосходство по цене над коксующимися углями категории Semi Soft (+12% в среднем за год). Динамика изменения цен приведена на рис. 6.

Рисунок 6 - Соотношение котировок металлургических углей

Реализация технологии вдувания ПУТ в РФ

Несмотря на то, что первые опыты по вдуванию ПУТ в СССР относятся к середине XX века, эта технология пока не нашла широкого применения на предприятиях РФ. Причины:

  • наличие избыточных запасов природного газа;
  • сложная инфраструктура подготовки, хранения и подачи ПУТ;
  • нерешённые проблемы с подачей ПУТ в доменные печи (конструкция фурм, равномерность распределения);
  • необходимость параллельных инвестиций в улучшение качества кокса и железорудного сырья.

Последней попыткой внедрения технологии вдувания ПУТ в РФ была реализация проекта на Тулачермет в 1992...1993 г.г. В ходе проведения эксперимента так и не удалось решить вопросы, связанные с подачей ПУТ в доменную печь.

До настоящего времени интерес к технологии вдувания ПУТ носил академический характер. Но изменившиеся экономические условия привели к пересмотру стратегии развития отечественной металлургии. Наметившийся в настоящее время тренд увеличения стоимости природного газа для промышленных предприятий подтолкнул ведущие металлургические компании РФ к реализации проектов по вдуванию ПУТ (НЛМК, Евраз ЗСМК, Евраз НТМК). Учитывая более сложные технические и технологические условия российских предприятий (табл. 7, см. раздел "Скачать/Вспомогательная литература" ) и качество отечественной угольной базы, реализация проектов по вдуванию ПУТ будет сопряжена с известными трудностями, и достижение высоких показателей по количеству вдуваемого ПУТ и коэффициенту замены кокса маловероятно.

Таблица 7. Технологические условия доменных печей

Тем не менее, переход на новую технологию является очевидным шагом на пути к оптимизации себестоимости чугуна путём комбинации различных технологических заменителей кокса.

Если говорить об угольной базе для ПУТ в РФ, то представляется возможным использовать для этих целей угли с низкими коксующими свойствами (ГЖО, СС, ТС) и пограничные с коксующимися марки энергетических углей (Г, Т). Сочетание высоколетучих (Г, ГЖО) и низколетучих (СС, ТС, Т) марок позволит создавать управляемые угольные смеси для использования в качестве ПУТ.

Качество и направления использования углей во многом определены составом исходного растительного материала и степенью метаморфизма. Приведено описание основных качественных характеристик металлургических углей. Особое место занимают угли для использования в качестве пылеугольного топлива (ПУТ). Перечислены требования для успешного внедрения технологии вдувания ПУТ, отражены особенности сгорания ПУТ в условиях доменной печи и особенности реализации технологии вдувания ПУТ в РФ. Приведены требования к углям для использования в качестве ПУТ и перечислены марки углей для использования в качестве ПУТ.

  • пылеугольное топливо
  • качество углей для ПУТ
  • цена ПУТ
  • требования к ПУТ

Основная литература:

Вспомогательная литература:

  • Вдувание ПУТ на пороге нового столетия ("НЧМЗР" 02.2001)
  • Улучшение качества сырья при вдувании ПУТ ("НЧМЗР" 03.2001)
  • Требования к качеству кокса для ДП с высоким расходом ПУТ ("Сталь" 06.2009)
  • Перспективы применения ПУТ в ДЦ Украины и России ("Сталь" 02.2008)

Измерение отражательной способности витринита Ro% относится к наиболее распространённым методом оценки степени созревания ОВ в осадках. Отражательная способность витринита измеряется как отношение интенсивностей отражённого и падающего пучков света. Согласно физическим законам отражения и преломления света,

Доля интенсивности, Rо, луча монохроматического света, который нормально отражается от плоской поверхности куска витринита с показателем преломления n, погружённого в масло с показателем преломления, n o (или в воздух с показателем n а), равна:

Показатели преломления n и n o , определяются интегральной температурной историей образца витринита, т.е. функцией T(t). Основу метода составляет представление о том, что в процессе углефикации витринит меняет свою отражательную способность от значений Ro = 0.25% на стадии торфа до Ro=4.0% на стадии антрацита (Лопатин, Емец, 1987). Огромный фактический материал, накопленный к настоящему времени, дает возможность идентифицировать те или иные стадии созревания по измеренным значениям Ro%. При этом возможны вариации в значенияx Ro% для ОВ разного типа, а также в зависимости от содержания примесей в ОВ. Так, Ro = 0.50 % приблизительно соответствует началу главной стадии образования нефти для высокосернистыx керогенов, тогда как Ro = 0.55 - 0.60% - той же стадии для керогенов типа I и II (см. ниже), а Ro = 0.65 - 0.70% - для керогенов типа III (Gibbons et al., 1983; Waples 1985). Один из вариантов предполагаемого соответствия значений Ro% основным стадиям созревания ОВ и вычисляемым значениям температурно-временного индекса (ТВИ), обсуждаемого ниже, можно увидеть в табл.1-7а , а также на рис. 1-7 . Соответствие стадий катагенеза значениям Ro, приведенное в таблице, основано на корреляционной связи вычисленных Температурно-Временных Индексов (ТВИ) и значений Ro%, измеренных в разных бассейнах мира, и является приближённым. Тем не менее, оно широко используется в литературе и обсуждается подробнее в разделе 7-5-1. Для удобства ориентации в различных шкалах катагенеза ОВ в табл.1-7б приводится также шкала соответствия значений

Табл.1-7а. Соответствие значений Ro% и ТВИ стадиям катагенеза ОВ (Waples,1985)

отражательной способности витринита %Ro стадиям зрелости ОВ, принятым в российской нефтяной геологии.



Табл.1-7б. Соответствие значений Ro% стадиям катагенеза ОВ, принятым в российской нефтяной геологии (Парпарова и др., 1981)

Диагенез: ДГ3, ДГ2 и ДГ1 ------ Ro < 0.25%

Протокатагенез: ПК1 (0.25 £ Ro £ 0.30%)

ПК2 ((0. 30 £ Ro £ 0.42%)

ПК2 ((0.42 £ Ro £ 0.53%)

Мезокатагенез: МК1 (0.53 £ Ro £ 0.65%)

МК2 ((0. 65 £ Ro £ 0.85%)

МК3 ((0.85 £ Ro £ 1.15%)

МК4 ((1. 15 £ Ro £ 1.55%)

МК5 ((1.55 £ Ro £ 2.05%)

Апокатагенез: АК1 (2.05 £ Ro £ 2.50%)

АК2 ((2. 50 £ Ro £ 3.50%)

АК3 ((3.50 £ Ro £ 5.00%)

АК4 ((Ro > 5.00%)

Коротко скажем о некоторых проблемах, связанных с использованием измерений %Ro для оценки степени катагенеза ОВ. Они связаны прежде всего со сложностью выделения витринитовыx мацералов из ОВ осадочныx пород из-за иx большого разнообразия. Использование отражательной способности витринита для контроля палеотемпературных условий возможно, вообще говоря, лишь на основе витринита из угольных пластов и с меньшей надёжностью витринита из континентального (“terrestrial”) материнского ОВ в глинах с содержанием органического углерода, не превосходящим 0.5% . Но и в этих континентальных (terrestrial) сериях следует соблюдать осторожность, так как в таких породах как песчаники основная часть ОВ может быть переработана и изменена (Durand et al.1986). Необходимо учитывать также и тот факт, что в любом случае для Ro > 2% отражательная способность будет зависеть ещё и от давления. Следует соблюдать осторожность и в распространении концепции витринита на морские и озёрные серии пород, так как в таких породах частицы, отражательная способность которых измеряется, редко являются витринитами высших растений и в большинстве случаев

Рис. 1-7. Корреляция отражательной способности витринита, Ro%, и степени углефикации с другими индексами зрелости и с положением зон генерации и разложения нефти и газа Вверху: по (Kalkreuth and Mc Mechan, 1984), внизу по (Tissot et al., 1987).



являются битуминоидами от планктона, ошибочно принимаемые за витринит (Waples, 1985; Durand et al. 1986). По термофизическим свойствам они отличаются от витринита. Аналогичная проблема существует и для континентальных (terrestrial) пород кембрий-ордовика и более древних возрастов. Они не могут содержать витринита, так как высших растений тогда не существовало. Во всех красноцветных формациях ОВ окислено. В известняках витриниты сохраняются реже и, если они присутствуют там, то их отражательная способность может отличаться от значений для нормального витринита той же степени углефикации (Buntebarth and Stegena, 1986).

Определённые ошибки в этом методе оценки катагенеза ОВ будут возникать и вследствие значительных разбросов в измеряемыx значенияx Ro, а также из за того факта, что в разрезе бассейна всегда будут присутствовать горизонты, в которых выделение витринита затруднено или невозможно вовсе. Например, при низких уровнях зрелости выделение витринитовых мацералов представляет большую проблему, и в связи с этим надёжность измерений Ro для значений меньших 0.3 - 0.4% крайне низка (Waples et al. 1992). Зависимость отражательной способности витринита от исходного химического состава витринита будет существенной (Durand et al.1986). Это объясняет тот факт, что большой разброс в значениях Ro% часто наблюдается даже в пределах одного бассейна (Tissot et al.1987). Чтобы сделать ошибку от вариаций в химическом составе витринита минимальной измерения Ro% проводят на образцах правильного витринита, выделенного стандартной процедурой из органической материи континентального происхождения. Не рекомендуется использовать эквивалентные виды витринита в ОВ типов I и II при создании универсальных шкал соответствия значений Ro% степеням преобразования ОВ (Tissot et al. 1987).

И всё же, при разумном учете сделанных замечаний метод оценки уровня зрелости ОВ и контроля через него палеотемпературных условий погружения осадочной толщи по измерениям отражательной способности витринита относится в настоящее время к наиболее надежным и распространённым методам в практике анализа нефетгазоносных бассейнов.

7.3 Использование измерений %Ro и других методов для оценки максимальных температур пород в истории погружения бассейна

Первоначально измерения отражательной способности витринита использовались для оценки максимальных температур T max в истории погружения свит. Для подобных целей в геологических исследованиях применялись и применяются целый ряд методов, таких как (Yalcin et al., 1997): 1) оценки T max по уровню зрелости ОВ (степени углефикации, отражательной способности витринита; 2) оценки, основанные на минералогических изменениях при диагенезе глинистых минералов и кристаллизации иллита; 3) методы, основанные на анализе жидкостных включений, например, температуры гомонизации жидкости; 4) геотермометры, основанные на специфических химических реакциях, например, характеризующих равновесие устойчивых изотопов (Hoefs, 1987) или равновесные состояния системы SiO 2 -Na-K-Ca (Ellis and Mahon, 1977); 5) Физзион-трэк анализ (анализ распределения следов от деления радиоактивных элементов в аппатите; Green et al., 1989; 1995); 6) на основе комбинации определений радиометрического возраста таких радиометрических систем, как K-Ar, Rb-Sr и U, которые замыкаются при различных температурах (Buntebarch and Stegena, 1986). Так как оценки палеотемператур до сих пор широко распространены в геологической литературе, мы коротко охарактеризуем каждый из этих методов. Начнём изложение с оценок максимальных температур пород по значениям отражательной способности витринита.

Отметим сразу, что развитие методов оценки максимальных температур в истории погружения осадочных свит (T max) связано с тем, что в 70-ые и 80-ые годы прошлого века многие исследователи рассматривали температуру как основной и по сути единственный фактор эволюции зрелости ОВ осадков. Влиянием времени на процесс созревания ОВ при этом пренебрегалось. Считалось, что измеренные (или вычисленные) значения отражательной способности витринита %Rо должны отражать максимальные температуры пород в истории их погружения. Следуя таким взглядам, предлагались различные корреляционные соотношения между значениями T max и отражательной способностью витринита породы в воздухе %R а и в масле %Ro . Например, в работах Аммосова и др. (1980) и Курчикова (1992) предлагается оценивать значения T max по измеренным величинам %R а из соотношения

10×R а (%) = 67.2× (7-1)

Для образцов углистых прослоек в породах, из соотношения

10×R а (%) = 67.2× (7-2)

Для песчаников и алевролитов и по уравнению

10×R а (%) = 67.2× (7-3)

Для глин и аргиллитов. В приведённых выражениях T max выражена в °С. Прайс (Price, 1983) также полагал, что время в один и даже более млн. лет не оказывает заметного влияния на процесс созревания ОВ и на основании этого предложил соотношение, подобное (7-1) – (7-3), связывающее T max с отражательной способностью витринита в масле (%Ro):

T max (°С) = 302.97×log 10 Ro(%) + 187.33 (7-4)

Несколько подобных соотношений было рассмотрено К. Баркером (Barker and Pawlevicz, 1986; Barker, 1988, 1993). Первое из них (Barker and Pawlevicz, 1986):

ln Ro(%) = 0.0078×T max (°С) - 1.2 (5)

опиралось на 600 измерений T max в 35 скважинах различных бассейнов мира. По мнению авторов, оно справедливо в интервале температур 25 £ T max £ 325°C и отражательных способностей витринита 0.2% £ Ro £ 4.0%. К. Баркер (Barker, 1988) предложил соотношение, описывающее ситуации с постоянной скоростью нагревания пород при погружении в бассейне:

T max (°С) = 104×ln Ro(%) + 148. (7-6),

и основанное на кинетической модели созревания витринита (Burnham and Sweeney, 1989). М. Джонсон и др. (Johnsson et al., 1993), анализируя эту формулу, замечают, что она неплохо описывает ситуацию со скоростями нагревания V = 0.1 – 1 °C/млн. лет, но для скоростей V = 10 – 100 °C/млн. лет недооценивает значения T max в области Ro < 0.5% и переоценивает их при Ro > 2%. В своей более поздней работе Баркер (Barker, 1993) предложил ещё один вариант корреляционной связи T max с %Ro, не содержащий ограничения на скорости нагревания пород,:

T max (°С) = [ ln(Ro(%) / 0.356) ] / 0.00753 (7-7)

Таким образом, в литературе предлагается достаточно много корреляционных соотношений T max - %Ro. На рис. 2-7 они сопоставлены друг с другом по результатам оценок T max для значений 0.4% £ Ro £ 4.0%.

Рис. 2-7. Соотношения, связывающие максимальную температуру T max в истории погружения породы с измеренными значениями отражательной способности витринита в масле %Ro, по различным литературным источникам: 1 (для углей), 2 (для песчаников и алевролитов), 3 (для глин и аргиллитов) – (Аммосов и др., 1980; Курчиков, 1992); 4 - (Price, 1983); 5 - (Barker and Pawlevicz, 1986); 6 - (Barker and Pawlevicz, 1986); 7 - (Barker, 1993); 8 - по температуре гомогенизации жидких включений (Tobin and Claxton, 2000).

Из этого рисунка очевиден значительный разброс в значениях T max , отвечающих фиксированным значениям Ro, который достигает 60 - 100°С для зрелости Ro ³ 0.7%. Этот разброс однозначно свидетельствует о том, что значение температуры (пусть даже и максимальное) одно не может определять зрелость ОВ в породах, и что время выдержки температуры играет заметную роль в созревании ОВ. Не исключено, что в отдельных интервалах Ro и в особых условиях осадконакопления (типа тех, что обеспечивают неизменную скорость прогревания пород) некоторые из приведённых соотношений неплохо описывают ситуацию, но как показывают исследования (см. ниже), одни и те же значения %Ro могут быть достигнуты, например, при более низких температурах но с большим временем выдержки породы (см. ниже). По этой причине всегда находится бассейн и формация с соответствующим интервалом зрелости и температур, для которых оценки по соотношениям (7-1) – (7-7) будут приводить к заметным ошибкам. Это обстоятельство имело следствием то, что популярность выписанных соотношений заметно снизилась за последние 10-15 лет.

Другим распространённым методом оценки палеотемператур пород в бассейнах является определение T max по анализу состава жидкостей, захваченных в процессе диагенеза матрицей пород. Применение метода возможно при выполнении следующих условий (Burruss 1989): 1) включение является однофазной жидкостью, 2) объём этой жидкоcти не меняется после её захвата породой, 3) состав её также оставался неизменным, 4) влияние давления на состав жидкости заранее известно, 5) время и механизм улавливания жидкости также известны. Перечисленные условия говорят о том, что необходима известная осторожность в применении метода (Burruss 1989). Во-первых, необходимы детальные петрографические исследования, чтобы установить относительное время формирования жидкого включения. Во-вторых, необходим тщательный анализ тектонического развития района и истории погружения бассейна для детализации истории вмещающих пород. Необходим также анализ фазового поведения и химического состава захваченной жидкости. Но и после этого остаются две важных проблемы - одна, связанная с предположением о неизменности химического состава жидкости после её захвата матрицей породы (имеются убедительные свидетельства, что это не всегда так), и другая, связанная с определением величины и типа давления, существовавшего в период вмещения жидкости - было ли оно литостатическим или гидростатическим (Burruss 1989). В случае, если все указанные проблемы решены, температура породы на момент захвата жидкости определяется по соответствующей Р-Т диаграмме равновесия жидкой и твёрдой фаз исследуемого вещества. В развитие этого метода Тобин и Клакстон (Tobin and Claxton, 2000) предложили использовать корреляционную связь температуры гомогенизации жидких включений T hom и отражательной способности витринита Ro% (Рис. 2-7):

Ro% = 1.9532 ´ log T hom – 2.9428 (7-8)

Они установили, что при использовании «идеального» ряда измерений соотношение (7-8) выполняется с коэффициентом корреляции 0.973 и дисперсией данных менее 0.12% Ro. Если же используется весь ряд мировых данных то соотношение вида:

Ro = 2.1113 ´ log T hom – 3.2640 (7-9)

будет выполняться c коэффициентом корреляции 0.81 и максимальной дисперсией данных менее 0.32% Ro (Tobin and Claxton, 2000). Температуру гомогенизации T hom часто используют как оценку максимальной температуры пород T max в процессе её погружения в бассейне. Однако, рис. 2-7 показывает, что кривая, построенная по формуле (7-9), заметно отличается от оценок T max по формулам (7-1) – (7-7), пересекая остальные линии на рис. 2-7. Она явно занижает температуры для Ro < 1.5% и даёт нереально высокие значения при Ro > 2% (Th = 540, 930 и 1600°C для Ro=2.5, 3 и 3.5%, соответственно).

Рис.3-7 Изменение изотопного отношения d 13 C с глубиной для газового месторождения бассейна Анадарко (США; Price, 1995).

В ряде работ (Rooney et al., 1995; Price, 1995 и др.) для оценки температуры генерации углеводородов предлагается использовать изменение изотопного состава углерода в ходе катагенеза ОВ (рис. 3-7) . Результаты экспериментов по генерации газов ОВ типа II (материнские породы бассейнов Делавар и Вал-Верде в западном Техасе) при постоянной скорости нагревания пород 1°С/мин (левый рис. 4-7 ; Rooney et al., 1995) демонстрируют заметное изменение изотопного состава газов

Рис. 4-7. Температура генерации газа и изотопное отношение d 13 C для метана (d 13 C 1), этана (d 13 C 2) и пропана (d 13 C 3), генерированных керогеном типа II материнских пород бассейнов Делавар и Вал-Верде в западном Техасе при скорости нагревания пород 1°С/мин (левый рис., по Rooney et al., 1995) и Изотопное отношение d 13 C для метана, генерированного при различных температурах в ходе гидроидного пиролиза образцов пород с ОВ различного типа (правый рис., по Price, 1995).

с температурой и тем самым подтверждают принципиальную возможность использования этой зависимости для оценки температуры генерации газов ОВ данного типа. О том же говорят и результаты гидроидного пиролиза образцов пород с ОВ различного типа, приведённые на левом рис. 4-7. Они также наглядно демонстрируют изменение изотопного отношения d 13 C для метана, генерированного при разных температурах (Price, 1995). Однако, эти эксперименты указывают и на крайне высокую чувствительность изменений d 13 C к вариациям в составе и типе ОВ, в силу чего применение метода возможно лишь после детального анализа состава ОВ и получения соответствующих зависимостей именно для анализируемого типа вещества. Широкий разброс в значениях d 13 C с глубиной, показанный на рис. 3-7 для типичного разреза осадочного бассейна, в основном и вызван вариациями в составе и типе ОВ в породах макро и микро слоёв разреза. Такой разброс сильно ограничивает достоверность оценок температур по изотопным отношениям в газах реальных осадочных разрезов.

Процесс преобразования смектита в иллит в глинистых минералах также иногда используется для контроля палеотемпературных условий в бассейнах. Однако, рис. 5-7 показывает, что интервалы температур, характерные для процесса, довольно широки. Такой разброс по температурам не удивителен, так как лабораторные исследования показывают, что процесс преобразования смектита в иллит управляется кинетической реакцией 6-ого порядка (Pytte and Reynolds, 1989) и, следовательно, время влияет на скорости этих переходов наряду с температурой. Подробнее эти реакции будут рассмотрены в заключительном разделе этой главы, здесь же отметим, что разумные оценки температуры перехода смектита в иллит возможны лишь для изотермического варианта преобразования минералов, но и тогда погрешность метода будет заметной.

Рис.5-7 Преобразование глинистых минералов по данным анализа образцов из 10 скважин Северного моря (Dypvik, 1983). Процессы исчезновения смектита и слоёв иллита разных уровней в смешаннослойных смектит-иллитовых глинистых минералах привязаны к значениям температур и отражательной способности витринита.

Из всех микрокомпонентов ОВ самым лучшим с точки зрения показательности при изучении степени катагенетического преобразования является витринит. Дело в том что, для надежной диагностики необходим микрокомпонент, который должен иметь закономерное изменение свойств в процессе преобразования, в то же время он должен быть широко распространен в ОВ. Витринит отвечает всем вышеуказанным требованиям, в отличие от остальных микрокомпонентов углей и РОВ. Которые либо сливаются с общей органической массой углей уже на средних стадиях катагенеза (лейптинит), либо слабо и неравномерно реагирующими на изменение параметров окружающей среды(фюзинит). И только витринит меняет свои свойства закономерно постепенно и очень легок в диагностике.

Именно на основании отражательной способности витринита построено большинство шкал для определения степени катагенеза. Кроме него используются и другие микрокомпоненты РОВ, но в меньшей степени. В основе метода лежит закономерность повышения блеска в процессе катагенеза. Это легко можно увидеть визуально, если рассмотреть изменение блеска углей в процессе их изменение. Не требуется особых приборов, чтобы заметить, что блеск антрацита, например, намного выше блеска, бурого угля. Отражательная способность тесно связана с внутренним строением вещества, а именно со степенью упаковки частиц в веществе. От этого как раз она и зависит. Конечно, изучение степени катагенеза по отражательной способности проводится с использованием специального оборудования, например, установка ПООС-I прибор состоит из поляризационного микроскопа, оптической насадки, фотоэлектронного умножителя (ФЭУ) и регистрирующего устройства. При проведении исследования сравниваются фототоки, вызванные светом, отраженным от поверхности образца и эталона.

Итак, за эталон при проведении исследований принят витринит, точнее его отражательная способность. Она измеряется при помощи различных фотометров и эталонов в воздухе и иммерсионной среде при строго перпендикулярном падении света на хорошо отполированную поверхность образца. Измерения проводятся лишь в узком диапазоне длин волн: от 525 до 552 нм. Это ограничение связано с техническими характеристиками прибора. За эталон принята длинна волны 546,1 нм, но небольшие колебание вокруг этого значения, практически не оказывает заметного влияния на значение измерения. Образец закрепляется на столике микроскопа и останавливается так, чтобы его поверхность была перпендикулярна оси оптической насадки. Как было сказано выше, мы измеряем интенсивность отраженного света поочередно у образца и эталона при помощи ФЭУ. По определению, отражательная способность - способность отражать часть света падающего на поверхность. Если перевести это на числовой язык, то это отношение отраженного света к падающему.

Что можно записать, как:

Где I1 - это интенсивность отраженного света, а I2 - это интенсивность падающего света. Практически же при проведении измерений используется формула

Здесь R - искомый показатель отражения, d - показания прибора при измерении исследуемого вещества, а R1, соответственно, - показатель отражения эталона и d1- показания прибора при измерении эталона. Если настроить прибор-приемник на нулевое значение для эталона, тогда формула упрощается до R=d.

Кроме витринита, для проведения измерений используются и другие микрокомпоненты ОВ. Некоторые из них обладают свойством анизотропии отражательной способности. Обычно применяется три параметра измерения: Rmax Rmin Rcp. Повышение анизотропии витринита в процессе катагенеза связано в основном с процессом постепенного упорядочивания ароматических гуминовых мицелл, связанного с повышением давления с увеличением глубины погружения. Измерения в случае анизотропного препарата идейно ничем не отличаются от измерения однородного образца, но проводится несколько измерений. При этом столик микроскопа вращается на 360? с промежутками по90?. Всегда детектируется два положения с максимальным показателем отражательной способности и два с минимальной. Угол между каждыми из них составляет 180?. Измерения проводятся для нескольких фрагментов породы, и позже вычисляется среднее значение. Как среднее арифметическое средних значений максимального и минимального измерения:

Можно сразу определять среднее значение, выбирая угол поворота 45? от максимального или минимального значения, но это измерение верно только при изучении слабо преобразованного ОВ.

При проведении исследований, возникает несколько проблем, связанных с технологией. Например, если мы имеем породу, с низким общим содержанием ОВ то появляется необходимость специальной обработки образца и перевода его в форму концентрированных аншлифов-брикетов. Но в процессе получения концентратов исходное органическое вещество подвергается химической обработке, что не может не сказаться на оптических свойствах вещества. Кроме того теряется информация о структуре органического вещества породы. Искажения в измерениях может внести и то, что технология процесса приготовления препарата не стандартизировано и готовность образца обычно определяется визуально. Проблему представляет так же физические свойства пород, такие например как сильная минерализация или хрупкость угля, в этом случае приходится изучать отражательную способность на той площади поверхности, которую удалось получить. Если правильно выбрать участок, то окружающие дефекты практически не влияют на измерения. Но принципиально количественные величины ошибок, практически не влияют на определение стадии катагенеза.

Образцы изучаются, обычно в условиях обычной воздушной среды, это легко, быстро. Но если необходимо детальное изучение под большим увеличением, применяют иммерсионные среды, обычно это кедровое масло. Оба измерения верны и каждый из них используется, но каждый в своем определенном случае. Преимущества измерений в иммерсионной среде заключаются в том, что они позволяют изучать частицы с малой размерностью, кроме того, повышается резкость, что позволяет более детально диагностировать степень катагенеза.

Дополнительной трудностью при исследованиях является диагностика микрокомпонентов ОВ так как они обычно определяются в проходящем свете. В то время как отражательная способность, очевидно в отраженном. Поэтому. Обычно в процессе исследований комбинируют два метода. То есть попеременно используют проходящий и отраженный свет для изучения одного и того же фрагмента РОВ. Для этого обычно используются двусторонне полированные шлифы. В них после просмотра и определения микрокомпонента в проходящем свете освещение переключается и проводятся замеры в отраженном свете.

Витринит может использоваться не только для определения степени преобразованности органического вещества, но и для определения его отношения к породе. У сингенетичного витринита форма фрагментов обычно удлиненная, расположены частицы параллельно плоскостям напластования и, обычно обладают клеточной структурой. Если же мы имеем дело с частицами витринита округлой, окатанной формы, то скорее всего это переотложенное вещество.

Марка А (антрацит).
Антрациты объединяют уголь с показателем отражения витринита более 2,59%.При выходе летучих веществ менее 8% к антрацитам относятся также угли с показателем отражения витринита от 2,2 до 2,59%. Основная масса антрацитов используется в энергетических целях. Средние и крупные классы их служат в качестве бездымного топлива в коммунально-бытовом секторе. Часть антрацитов направляется на производство термоантрацита, который, в свою очередь, используется в качестве основного углеродистого наполнителя при изготовлении катодных блоков для электролизеров в алюминиевой промышленности. Антрациты применяются также для производства карбида кремния и карбида алюминия.

Марка Д (длиннопламенный) .
Уголь длиннопламенный представляют собой угли с показателем отражения витринита от 0,4 до 0,79% с выходом летучих веществ более 28-30% при порошкообразном или слабоспекающемся нелетучем остатке. Длиннопламенные угли не спекаются и относятся к энергетическим углям. Направления использования этих углей - энергетическое и коммунально-бытовое топливо, поэтому их наиболее существенной характеристикой является теплота сгорания. При переходе к следующей марке ДГ теплотворная способность углей существенно увеличивается. Исследования показали, что длиннопламенный уголь с невысокой зольностью может служить хорошим сырьем для производства синтетического жидкого топлива и химических продуктов, получения формованного кокса и сферических абсорбентов,низкотемпературного (до 700 градусов) коксования.

Марка ДГ (длиннопламенный газовый).
Угли длиннопламенные газовые представляют собой уголь с показателем отражения витринита от 0,4 до 0,79% с выходом летучих веществ более 28-30% при порошкообразном или слабоспекающемся нелетучем остатке. Эти угли являются переходными между углями марок Д и Г. От длиннопламенных углей они отличаются наличием спекаемости (толщина пластического слоя 6-9 мм, а от газовых с аналогичной спекаемостью - более незначительной хрупкостью и повышенной механической прочностью. Последнее обстоятельство обусловливает преобладание среди таких углей крупно-средних классов. Уголь марки ДГ также относят к группе энергетических углей. Для участия в коксовых шихтах они мало пригодны, т.к. образующийся кокс отличается низкой механической прочностью и повышенной реакционной способностью.

Марка Г (газовый).
Уголь газовый имеет две технологические группы. Витринитовые угли (показатель отражения витринита от 0,5 до 0,89%) с выходом летучих веществ 38% и более, при толщине пластического слоя от 10 до 12 мм образуют группу 1Г, витринитовые и инертинитовые угли с показателем отражения витринита 0,8 - 0,99%, выходом летучих веществ 30% и выше и толщиной пластического слоя от 13 до 16 мм образуют группа 2Г.Влажность газового угля обычно не превышает 10 %, зольность изменяется в пределах от 7 до 35% с преобладанием зольности 10-15%. Газовые угли используются в основном как энергетическое и коммунально-бытовое топливо. На коксование направляют уголь группы 2Г с толщиной пластического слой более13мм.Ограниченная возможность применения газовых углей в шихтах коксохимических заводов, производящих металлурги¬ческий кокс, связана с тем, что они при слоевом коксовании обусловливают образование микротрещин в коксе, существенно снижающих его прочность. Газовый уголь с толщиной пластического слоя 8-12 мм используются для производства формованного кокса и сферических абсорбентов, а угли с толщиной пластического слоя менее 8 мм - для газификации и полукоксования. Витринитовые малозольные угли марки Г с выходом летучих веществ более 42% являются хорошим сырьем для производства синтетического жидкого топлива.
Марка Б (Бурый).
Уголь бурый характеризуется низким значением показателя отражения витринита (менее 0,6%) и высоким выходом летучих веществ (более 45%). Бурые угли делятся в зависимости от влажности на технологические группы: 1Б (влажность свыше 40%), 2Б (30-40%), 3Б (до 30%). Бурые угли Канско-Ачинского угольного бассейна представлены в основном группой 2Б и частично - 3Б (показатель отражения витринита 0,27-0,46%), бурые угли Подмосковного бассейна относятся к группе 2Б, угли Павловского и Бикинского месторождений (Приморский край) относятся к группе 1Б. Бурый уголь используют как энергетическое топливо и химическое сырье.

Марка ГЖО (газовый жирный отощенный).
Угли газовые жирные отощенные по значениям выхода летучих веществ и толщины пластического слоя занимают промежуточное положение между углями марок Г и ГЖ. Выделяют две технологические группы. В техноло-гическую группу 1ГЖО выделены уголь с показателем отражения витринита менее 0,8% и выходом летучих веществ менее 38%, с толщиной пластического слоя от 10 до 16 мм. В группу 2ГЖО входят угли с показателем отражения витринита 0,80-0,99%, выходом летучих веществ менее 38%, с толщиной пластического слоя 10-13 мм, а также угли с показателем отражения витринита 0,80-0,89% с выходом летучих веществ 36% и более при толщине пластического слоя 14-16мм. Влажность марки ГЖО колеблет¬ся в пределах 6-8%, зольность - 6-40%. Содержание уг¬лерода изменяется в пределах 78-85%, водорода - от 4,8 до 6,0%, серы 0,2-0,8%. Уголь марки ГЖО характеризуются широкой вариацией свойств, что не позволяет рекомендовать для их использования какое-либо одно направление. Уголь группы 1ГЖО при толщине пластического слоя менее 13 мм могут составлять не более 20% шихт коксохимических заводов, и лишь при условии, что остальная часть шихты содержит хорошо спекающиеся угли с показателем отражения витринита от 1 до 1,5%. Уголь группы 2ГЖО являются хорошим сырьем для коксования (особенно при показателе отражения витринита не менее 0,85%) и могут составлять более половины шихты. Фюзинитовый уголь группы 1ГЖО (подгруппа 1ГЖОФ) совершенно непригоден для производства металлургического кокса,и могут использоваться в коммунально-бытовом (крупные классы) или энергетическом (мелкие классы) секторах.

Марка ГЖ (газовый жирный).
Угли газовые жирные занимают промежуточное положение между марками углей Г и Ж и делятся на две группы. Группа 1ГЖ объединяет уголь с показателем отражения витринита 0,5-0,79%, выходом летучих веществ 38% и более и толщиной пластического слоя более 16 мм. Группа 2ГЖ объединяет уголь с показателем отражения витринита 0,8-0,99%, выходом летучих веществ 36% и более, толщиной пластического слоя 17-25 мм. От газовых углей марка ГЖ отличается более высокой спекаемостью, а от углей марки Ж — более высоким выходом летучих веществ. Угли марки ГЖ в основном используются в коксохимическойпромышленности и входят в группу марок углей, особо ценных для коксования. В большинстве случаев они могут полностью заменить жирные угли в шихтах коксохимических заводов. Концентраты угля марки ГЖ с зольностью менее 2% целесообразно применять в качестве связующего при производстве электродной и углеграфитовой продукции; угли марки ГЖ пригодны и для производства синтетического жидкого топлива.

Марка Ж (жирный).
Угли жирные подразделяются на две группы. К первой группе (1Ж) относятся уголь с показателем отражения витринита 0,8-1,19%, выходом летучих веществ 28-35,9% и толщиной пластического слоя 14-17 мм. Ко второй группе (2Ж) относятся угли с показателем отражения витринита 0,8-0,99%, выходом летучих веществ 36% и более, при толщине пластического слоя 26 мм и более. К этой же группе относятся угли с такими же значениями показателя отражения витринита, но с выходом летучих веществ от 30 до 36% при толщине пластического слоя 18 мм и выше. Также в группу 2Ж включаются уголь с показателем отражения витринита 1-1,19% с выходом летучих веществ не менее 30% при толщине пластического слоя не менее 18 мм. Уголь марки Ж относятся к особо ценным коксующимся углям и применяются главным образом в коксохимической промышленности, составляя от 20 до 70% коксовых шихт. Кокс, полученный из углей марки Ж, обладает высокой структурной прочностью.

Марка КЖ (коксовый жирный).
Угли коксовые жирные выделяются как уголь с показателем отражения витринита 0,9-1,29%, толщиной пластического слоя 18 мм, с выходом летучих веществ 25-30%. Основным потребителем угля марки КЖ является коксохимическая промышленность. Из всех марок уг¬лей, применяемых для получения кокса, они обладают наиболее высокой коксуемостью.Высококачественный металлургический кокс из них получается без смешивания с уг¬лями других марок. Кроме того, они способны принимать без изменения качества кокса до 20% присадочных углей марок КО, КС и ОС.

Марка К (Коксовый).
Уголь коксовый характеризуют показателем отражения витринита от 1 до 1,29%, а также хорошей спекаемостью. Толщина пластического слоя составляет 13-17 мм у углей с показателем отражения витринита 1,0-1,29% и 13 мм и выше с показателем отражения витринита 1,3-1,69%. Выход лету¬чих веществ находится в пределах 24-24,9%. Без смешивания их с углями других марок обеспечивают получение кондиционного металлургического кокса. Качество кокса может существенно возрастать при смешивании углей марки К с 20-40% углей марок Ж, ГЖ и КЖ.

Марка КО (Коксовый отощенный).
Уголь коксовый отощенный представляют собой уголь с выходом летучих веществ, близким по значениям к коксовым углям, но с меньшей толщиной пластического слоя - 10-12 мм. Показатель отражения витринита - 0,8-0,99%. Уголь марки КО применяются в основном для производства металлургического кокса в качестве одного из присадочных углей к маркам ГЖ и Ж.

Марка КСН (коксовый слабоспекающийся низкометаморфизованный).
Угли коксовые слабоспекающиеся низкометаморфизованные характеризуются показателем отражения витринита от 0,8 до 1,09%. При коксовании без смешивания с другими углями они дают механически мало прочный, сильно истирающийся кокс. Применяются как в коксохимической промышленности, так и в энергетике и коммунально-бытовом секторе. Уголь марки КСН может также использоваться для получения синтетического газа.

Марка КС (Коксовый слабоспекающийся).
Угли коксовые слабоспекающиеся характеризуются низкой спекаемостью (толщина пластического слоя 6-9 мм с показателем отражения витринита 1,1-1,69%. Уголь марки КС используются в основном в коксохимической промышленности в качестве отощающего компонента. Часть угля используется для слоевого сжигания в промышленных котельных и в коммунально-бытовом секторе. Угли коксовые слабоспекающиеся характеризуются низкой спекаемостью (толщина пластического слоя 6-9 мм с показателем отражения витринита 1,1-1,69%. Уголь марки КС используются в основном в коксохимической промышленности в качестве отощающего компонента. Часть угля используется для слоевого сжигания в промышленных котельных и в коммунально-бытовом секторе.

Марка ОС (отощенный спекающийся).
Угли отощенные спекающиеся имеют показатели отражения витринита от 1,3 до 1,8% и выход летучих веществ не более 21,9%. Толщина пластического слоя для группы 2ОС составляет 6-7 мм, а для группы 1ОС - 9-12 мм при витринитовом составе и 10-12 мм при фюзинитовом. Влажность добытых углей марки ОС не превы¬шает 8-10%. Зольность колеблется от 7 до 40%. Содержание серы в Кузнецком бассейне не превышает 0,6%, в Ка¬рагандинском достигает иногда 1,2%, в Донбассе 1,2-4,0%. Содержание углерода составляет 88-91%, водорода 4,2-5,%. Основным потребителем угля марки ОС является коксохимическая промышленность; эти угли - одна из лучших отощающих компонентов в коксовых шихтах. Некоторые угли марки ОС даже без смешивания с углями других марок дают высококачественный металлургический кокс; но при коксовании они развивают большое давление распирания на стенки коксовых печей, кокс из печей выдается с большим трудом, что приводит к быстрому выходу печей из строя. Поэтому уголь марки ОС обычно коксуют в смеси с углями марок Г и ГЖ, обладающими высокой степенью усадки.

Марка ТС (тощий слабоспекающийся).
Угли тощие слабоспекающиеся характеризуются выходом летучих веществ менее 22% и весьма низкой спекаемостью (толщина пластического слоя менее 6 мм. Влажность добытого угля марки ТС низкая - 4-6%. Зольность находится в пределах 6-45%. Содержание углерода 89-91%, водоро¬да 4,0-4,8%.Содержа¬ние серы в углях Кузбасса 0,3-0,5%, Донбасса 0,8-4,5%. Уголь марки ТС используются как в коксохимической промышленности, так и, в основном, в энергетике; крупно-средние классы углей этой марки являются хорошим бездымным топливом для мелких котельных и индивидуального бытового применения.

Марка СС (слабоспекающийся).
Угли слабоспекающиеся характеризуются показателем отражения витринита в пределах 0,7-1,79%, толщиной пластического слоя менее 6 мм и выходом летучих веществ, характерным для хорошо коксующихся углей марок Ж, КЖ, К, КС и ОС. Влажность добытого угля достигает 8-9%. Зольность колеблется от 8 до 45%. Содержание серы обычно не превышает 0,8%. Содержание углерода колеблется от 74 до 90%, водорода от 4,0 до 5,0%. Применяются главным образом на крупных электростанциях, в промышленных котельных и коммунально-бытовом секторе. В ограниченном количестве отдельные разновидности углей марки СС применяются в шихтах коксохимических заводов.

Марка Т (тощий).
Уголь тощий характеризуется выходом летучих веществ от 8 до 15,9% с показателем отражения витринита от 1,3 до 2,59%; спекаемость отсутствует. Используются в основном в электроэнергетике и в коммунально-бытовом секторе; при условии малой зольности могут использоваться для получения углеродистых наполнителей в электродном производстве.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Все о бизнесе