Все о бизнесе

Какие причины внедрения ПГУ в России, почему это решение трудное но необходимое?

Почему начали строить ПГУ

Децентрализованный рынок производства электроэнергии и теплоты диктует энергетическим компаниям необходимость повышения конкурентоспособности сво­ей продукции. Основное значение для них имеют минимизация риска инвестиций и реальные результаты, которые можно получить при использовании данной технологии.

Отмена государственного регу­лирования на рынке электроэнергии и теплоты, которые станут коммерческим продуктом, приведет к усилению конкуренции между их производителями. Поэтому в будущем только надежные и высо­корентабельные электростанции смогут обеспечить дополнитель­ные капиталовложения в осуществление новых проектов.

Критерии выбора ПГУ

Выбор того или иного типа ПГУ зависит от многих факто­ров. Одними из наиболее важных критериев в реализации про­екта являются его экономическая выгодность и безопасность.

Анализ существующего рынка энергетических установок пока­зывает значительную потребность в недорогих, надежных в эк­сплуатации и высокоэффективных энергетических установках. Выполненная в соответствии с этой концепцией модульная конструкция с заданными параметрами делает установку легко адаптируемой к любым местным условиям и специфическим требованиям заказчика.

Такая продукция удовлетворяет более 70 % заказчиков. Этим условиям в значительной степени соответствуют ГТ и ПГ-ТЭС утилизационного (бинарного) типа.

Энергетический тупик

Анализ энергетики России, выполненный рядом академи­ческих институтов, показывает: уже сегодня электроэнергетика России практически теряет ежегодно 3-4 ГВт своих мощностей. В результате к 2005 г. объем отработавшего свой физический ресурс оборудования будет составлять, по данным РАО “ЕЭС России”, 38 % общей мощности, а к 2010 г. этот показатель составит уже 108 млн. кВт (46 %).

Если события будут развиваться именно по такому сценарию, то большинство энергоблоков из-за старения в ближайшие годы войдут в зону серьезного риска аварий. Пробле­му технического перевооружения всех типов существующих элек­тростанций обостряет то, что даже часть сравнительно “молодых” энергоблоков 500-800 МВт исчерпала ресурс работы основных узлов и требует серьезных восстановительных работ.

Читайте также: Важность капитала при проектировании парогазовой станции

Реконструкция электростанций – это проще и дешевле

Продление сроков эксплуатации станций с заменой крупных узлов основного оборудования (роторов турбин, поверхностей на­грева котлов, паропроводов), конечно, значительно дешевле, чем строительство новых электростанций.

Электростанциям и заводам-изготовителям зачастую удобно и выгодно заменять оборудование на аналогичное демонтируемому. Однако при этом не используют­ся возможности значительного увеличения экономии топлива, не уменьшается загрязнение окружающей среды, не применяются со­временные средства автоматизированных систем нового оборудо­вания, увеличиваются затраты на эксплуатацию и ремонт.

Низкий КПД электростанций

Россия постепенно выходит на европейский энергетический рынок, войдет в ВТО, вместе с тем у нас много лет сохраняется крайне низкий уровень тепловой эффективности электроэнерге­тики. Средний уровень коэффициента полезного действия энерго­установок при работе на конденсационном режиме равен 25 %. Это означает, что при повышении цены на топливо до мирового уровня цена на электроэнергию у нас неизбежно станет в полто­ра-два раза выше мировой, что отразится на других товарах. По­этому реконструкция энергоблоков и тепловых станций должна производиться так, чтобы вводимое новое оборудование и отдель­ные узлы электростанций были на современном мировом уровне.

Энергетика выбирает парогазовые технологии

Сейчас, несмотря на тяжелое финансовое положение, в конст­рукторских бюро энергомашиностроительных и авиадвигательных научно-исследовательских институтов возобновились разработки новых систем оборудования для тепловых электростанций. В частности, речь идет о создании конденсационных парогазовых электро­станций с коэффициентом полезного действия до 54-60 %.

Эконо­мические оценки, сделанные разными отечественными организациями, свидетельствуют о реальной возможности снизить издержки производства электроэнергии в России, если строить подобные электростанции.

Даже простые ГТУ будут эффективнее по КПД

На ТЭЦ не обязательно повсеместно применять ПГУ такого типа, как ПГУ-325 и ПГУ-450. Схемные решения могут быть различны­ми в зависимости от конкретных условий, в частности, от соотно­шения тепловых и электрических нагрузок.

Читайте также: Как выбрать газотурбинную установку для станции с ПГУ

В простейшем случае при использовании тепла отработавших в ГТУ газов для теплоснаб­жения или производства технологического пара электрический КПД ТЭЦ с современными ГТУ достигнет уровня 35 %, что также зна­чительно выше существующих сегодня. Об отличиях КПД ГТУ и ПТУ - читате в статье Как отличаются КПД ГТУ и КПД ПГУ для отечественных и зарубежных электростанций

Применение ГТУ на ТЭЦ может быть очень широким. В настоя­щее время около 300 паротурбинных агрегатов ТЭЦ мощностью 50-120 МВт питаются паром от котлов, сжигающих 90 и более процентов природного газа. В принципе все они являются кандида­тами на техническое перевооружение с использованием газовых турбин единичной мощностью 60-150 МВт.

Трудности с внедрением ГТУ и ПГУ

Однако процесс промышленного внедрения ГТУ и ПГУ в на­шей стране идет крайне медленно. Главная причина - инвестици­онные трудности, связанные с необходимостью достаточно круп­ных финансовых вложений в минимально возможные сроки.

Другое сдерживающее обстоятельство связано с фактическим отсутствием в номенклатуре отечественных производителей чисто энергетических газовых турбин, проверенных в широкомасштаб­ной эксплуатации. За прототипы таких газовых турбин можно при­нять ГТУ нового поколения.

Бинарные ПГУ без регенерации

Определенным преимуществом обладают бинарные ПГУ, как наиболее дешевые и надежные в эксплуатации. Паровая часть би­нарных ПГУ очень проста, так как паровая регенерация невыгодна и не используется. Температура перегретого пара на 20-50 °С ниже температуры отработавших в ГТУ газов. В настоящее время она дос­тигла уровня стандартных в энергетике 535-565 °С. Давление све­жего пара выбирается так, чтобы обеспечить приемлемую влаж­ность в последних ступенях, условия работы и размеры лопаток которых примерно такие же, как и в мощных паровых турбинах.

Влияние давления пара на эффективность ПГУ

Учитываются, конечно, экономические, стоимостные факторы, так как давление пара мало влияет на термический КПД ПГУ. Чтобы уменьшить температурные напоры между газами и паро­водяной средой и лучшим образом с меньшими термодинами­ческими потерями использовать тепло отработавших в ГТУ га­зов, испарение питательной воды организуют при двух или трех уровнях давления. Выработанный при пониженных давлениях пар подмешивают в промежуточных точках проточной части турби­ны. Осуществляют также промежуточный перегрев пара.

Читайте также: Выбор цикла парогазовой установки и принципиальной схемы ПГУ

Влияние температуры уходящих газов на КПД ПГУ

С повышением температуры газов на входе в турбину и выхо­де из нее параметры пара и экономичность паровой части цикла ГТУ возрастают, способствуя общему увеличению КПД ПГУ.

Выбор конкретных направлений создания, совершенствования и широкомасштабного производства энергетических машин дол­жен решаться с учетом не только термодинамического совершен­ства, но и инвестиционной привлекательности проектов. Инвести­ционная привлекательность российских технических и производственных проектов для потенциальных инвесторов - важнейшая и актуальнейшая проблема, от решения которой в значительной мере зависит возрождение экономики России.

(Visited 3 318 times, 4 visits today)

Парогазовыми называются энергетические установки (ПГУ) , в которых теплота уходящих газов ГТУ прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле.

На рис. 4.10 показана принципиальная схема простейшей парогазовой установки, так называемого утилизационного типа. Уходящие газы ГТУ поступают в котёл-утилизатор - теплообменник противоточного типа, в котором за счет тепла горячих газов получают пар высоких параметров, направляемый в паровую турбину.

Рисунок 4.10. Принципиальная схема простейшей парогазовой установки

Котёл-утилизатор представляет собой шахту прямоугольного сечения , в которой размещены поверхности нагрева, образованные сребрёнными трубами, внутрь которых подаётся рабочее тело паротурбинной установки (вода или пар). В простейшем случае поверхности нагрева котла-утилизатора состоят из трёх элементов: экономайзера 3, испарителя 2 и пароперегревателя 1. Центральным элементом является испаритель , состоящий из барабана 4 (длинного цилиндра, заполняемого наполовину водой), нескольких опускных труб 7 и достаточно плотно установленных вертикальных труб собственно испарителя 8. Испаритель работает на принципе естественной конвекции . Испарительные трубы находятся в зоне более высоких температур, чем опускные. Поэтому в них вода нагревается, частично испаряется и поэтому становится легче и поднимается вверх в барабан. Освобождающееся место заполняется более холодной водой по опускным трубам из барабана. Насыщенный пар собирается в верхней части барабана и направляется в трубы пароперегревателя 1. Расход пара из барабана 4 компенсируется подводом воды из экономайзера 3. При этом поступающая вода, прежде чем испариться полностью, многократно пройдет через испарительные трубы. Поэтому описанный котёл-утилизатор называется котлом с естественной циркуляцией .

В экономайзере происходит нагрев поступающей питательной воды практически до температуры кипения . Из барабана сухой насыщенный пар поступает в пароперегреватель, где перегревается сверх температуры насыщения. Температура получаемого перегретого пара t 0 всегда, конечно, меньше, чем температура газов q Г , поступающих из газовой турбины (обычно на 25 - 30 °С).

Под схемой котла-утилизатора на рис. 4.10 показано изменение температур газов и рабочего тела при их движении навстречу друг другу. Температура газов плавно уменьшается от значения q Г на входе до значения q ух температуры уходящих газов. Движущаяся навстречу питательная вода повышает в экономайзере свою температуру до температуры кипения (точка а ). С этой температурой (на грани кипения) вода поступает в испаритель. В нём происходит испарение воды. При этом её температура не изменяется (процесс a - b ). В точке b рабочее тело находится в виде сухого насыщенного пара. Далее в пароперегревателе происходит его перегрев до значения t 0 .

Образующийся на выходе из пароперегревателя пар направляется в паровую турбину, где, расширяясь, совершает работу. Из турбины отработанный пар поступает в конденсатор, конденсируется и с помощью питательного насоса 6 , повышающего давление питательной воды, направляется снова в котёл-утилизатор.

Таким образом, принципиальное отличие паросиловой установки (ПСУ) ПГУ от обычной ПСУ ТЭС состоит только в том, что топливо в котле-утилизаторе не сжигается, а необходимая для работы ПСУ ПГУ теплота берётся от уходящих газов ГТУ. Общий вид котла – утилизатора приведен на рис.4.11.

Рисунок 4.11. Общий вид котла – утилизатора

Электростанция с ПГУ показана на рис. 4.12, на котором изображена ТЭС с тремя энергоблоками. Каждый энергоблок состоит из двух рядом стоящих ГТУ 4 типа V94.2 фирмы Siemens , каждая из которых свои уходящие газы высокой температуры направляет в свой котёл-утилизатор 8 . Пар, генерируемый этими котлами, направляется в одну паровую турбину 10 с электрогенератором 9 и конденсатором, расположенным в конденсационном помещении под турбиной. Каждый такой энергоблок имеет суммарную мощность 450 МВт (каждая ГТУ и паровая турбина имеют мощность примерно 150 МВт). Между выходным диффузором 5 и котлом-утилизатором 8 установлена байпасная (обводная) дымовая труба 12 и газоплотный шибер 6 .

Рисунок 4.12. Электростанция с ПГУ

Основные преимущества ПГУ.

1. Парогазовая установка - в настоящее время самый экономичный двигатель, используемый для получения электроэнергии.

2. Парогазовая установка - самый экологически чистый двигатель. В первую очередь это объясняется высоким КПД - ведь вся та теплота, содержащаяся в топливе, которую не удалось преобразовать в электроэнергию, выбрасывается в окружающую среду и происходит её тепловое загрязнение. Поэтому уменьшение тепловых выбросов ПГУ по сравнению с паросиловой примерно соответствует уменьшению расхода топлива на производство электроэнергии.

3. Парогазовая установка - очень маневренный двигатель, с которым в маневренности может сравниться только автономная ГТУ. Потенциально высокая маневренность ПТУ обеспечивается наличием в её схеме ГТУ, изменение нагрузки которой происходит в течение нескольких минут.

4. При одинаковой мощности паросиловой и парогазовой ТЭС потребление охлаждающей воды ПГУ примерно втрое меньше. Это определяется тем, что мощность паросиловой части ПГУ составляет 1/3 от общей мощности, а ГТУ охлаждающей воды практически не требует.

5. ПГУ имеет более низкую стоимость установленной единицы мощности, что связано с меньшим объёмом строительной части, с отсутствием сложного энергетического котла, дорогой дымовой трубы, системы регенеративного подогрева питательной воды, использованием более простых паровой турбины и системы технического водоснабжения.

ЗАКЛЮЧЕНИЕ

Главным недостатком всех тепловых электростанций является то, что все виды применяемого топлива являются невосполнимыми природными ресурсами, которые постепенно заканчиваются. Кроме того, ТЭС потребляют значительное количество топлива (ежедневно одна ГРЭС мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля) и являются самыми экологически «грязными» источниками электроэнергии, особенно если они работают на высокозольных сернистых топливах. Именно поэтому в настоящее время, наряду с использованием атомных и гидравлических электростанций, ведутся разработки электрических станций, использующих восполняемые или другие альтернативные источники энергии. Однако, несмотря ни на что ТЭС являются основными производителями электроэнергии в большинстве стран мира и останутся таковыми, как минимум в ближайшие 50 лет.

КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИИ 4

1. Тепловая схема ТЭЦ – 3 балла.

2. Технологический процесс производства электроэнергии на ТЭС – 3 балла.

3. Компоновка современных ТЭС – 3 балла.

4. Особенности ГТУ. Структурная схема ГТУ. КПД ГТУ – 3 балла.

5. Тепловая схема ГТУ – 3 балла.

6. Особенности ПГУ. Структурная схема ПГУУ. КПД ПГУ – 3 балла.

7. Тепловая схема ПГУ – 3 балла.


ЛЕКЦИЯ 5

АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ. ТОПЛИВО ДЛЯ АЭС. ПРИНЦИП РАБОТЫ ЯДЕРНОГО РЕАКТОРА. ПРОИЗВОДСТВО ЭЛЕКТРОЭНЕРГИИ НА АЭС С ТЕПЛОВЫМИ РЕАКТОРАМИ. РЕАКТОРЫ НА БЫСТРЫХ НЕЙТРОНАХ. ДОСТОИНСТВА И НЕДОСТАТКИ СОВРЕМЕННЫХ АЭС

Основные понятия

Атомная электростанция (АЭС) это электростанция, вырабатывающая электрическую энергию путём преобразования тепловой энергии, выделяющейся в ядерном реакторе (реакторах) в результате управляемой цепной реакции деления (расщепления) ядер атомов урана. Принципиальное отличие АЭС от ТЭС только в том, что вместо парогенератора используется ядерный реактор - устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии.

Радиоактивные свойства у урана впервые обнаружил французский физик Антуан Беккерель в 1896 году. Английский физик Эрнест Резерфорд впервые осуществил искусственную ядерную реакцию под действием – частиц в 1919 году. Немецкие физики Отто Ган и Фриц Штрасман открыли в 1938 году, чтоделение тяжёлых ядер уранапри бомбардировке нейтронами сопровождается выделением энергии. Реальное использование этой энергии стало делом времени.

Первый ядерный реактор построен в декабре 1942 года в США группой физиков Чикагского университета под руководством итальянского физика Энрико Ферми . Впервые была реализована незатухающая реакция деления ядер урана. Ядерный реактор, названный СР-1, состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235 U , замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых (медленных) нейтронах; в таких реакторах замедлителя значительно больше чем урана.

В Европе первый ядерный реактор Ф-1 был изготовлен и запущен в декабре 1946 года в Москве группой физиков и инженеров во главе с академиком Игорем Васильевичем Курчатовым . Реактор Ф-1 был набран из графитовых блоков и имел форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м в отверстиях графитовых блоков были размещены урановые стержни. Реактор Ф-1, как и СР-1, не имел системы охлаждения, поэтому работал на малых уровнях мощности: от долей до единиц ватта.

Результаты исследований на реакторе Ф-1 послужили основой проектов для промышленных реакторов. В 1948 году под руководством И. В. Курчатова начались работы по практическому применению энергии атома для получения электроэнергии.

Первая в мире промышленная атомная электростанция мощностью 5 МВт была запущена 27 июня 1954 года в г. Обнинске Калужской области . В 1958 г. была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт (полная проектная мощность 600 МВт). В том же году развернулось строительство Белоярской промышленной АЭС, а в апреле 1964 г. генератор 1-й очереди дал электроэнергию потребителям. В сентябре 1964 года был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969 года. В 1973 году запущена Ленинградская АЭС.

В Великобритании первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 году в Колдер-Холле. Через год вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами по производству ядерной электроэнергии являются:США (788,6 млрд. кВт ч/год), Франция (426,8 млрд. кВт ч/год), Япония (273,8 млрд. кВт ч/год), Германия (158,4 млрд. кВт ч/год) и Россия (154,7 млрд. кВт ч/год). На начало 2004 года в мире действовал 441 энергетический ядерный реактор, российское ОАО «ТВЭЛ» поставляет топливо для 75 из них.

Крупнейшая АЭС в Европе - Запорожская АЭС г. Энергодар (Украина) - 6 атомных реакторов суммарной мощностью 6 ГВт. Крупнейшая в мире АЭС - Касивадзаки-Карива (Япония) - пять кипящих ядерных реакторов (BWR ) и два продвинутых кипящих ядерных реактора (ABWR ), суммарная мощность которых составляет 8,2 ГВт.

В настоящее время в России работают АЭС: Балаковская, Белоярская, Билибинская, Ростовская, Калининская, Кольская, Курская, Ленинградская, Нововоронежская, Смоленская.

В разработках проекта Энергетической стратегии России на период до 2030 года предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

Атомные электростанции классифицируются в соответствии с установленными на них реакторами:

l реакторы на тепловых нейтронах , использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива;

l реакторы на быстрых нейтронах .

По виду отпускаемой энергии атомные станции делятся на:

l атомные электростанции (АЭС), предназначенные для выработки только электроэнергии;

l атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию.

В настоящее только в России рассматриваются варианты строительства атомных станций теплоснабжения.

АЭС не использует воздух для окисления топлива, не даёт выбросов золы, оксидов серы, углерода и т.д. в атмосферу, имеет радиоактивный фон ниже, чем на ТЭС, но, как и ТЭС, потребляет огромное количество воды для охлаждения конденсаторов.

Топливо для АЭС

Главное отличие АЭС от ТЭС состоит в использовании ядерного горючего вместо органического топлива . Ядерное горючее получают из природного урана, который добывают либо в шахтах (Нигер, Франция, ЮАР), либо в открытых карьерах (Австралия, Намибия), либо способом подземного выщелачивания (Канада, Россия, США). Уран широко распространён в природе, но богатых по содержанию залежей урановых руд нет. Уран содержится в различных горных породах и воде в рассеянном состоянии. Природный уран это смесь в основном неделящегося изотопа урана 238 U (более 99%) и делящегося изотопа 235 U (примерно 0,71%) , который и представляет собой ядерное горючее (1 кг 235 U выделяет энергию равную теплоте сгорания примерно 3000 т каменного угля).

Для работы реакторов АЭС требуется обогащение урана . Для этого природный уран направляется на обогатительный завод, после переработки, на котором 90% природного обеднённого урана направляется на хранение, а 10% обогащается до 3,3 - 4,4 %.

Из обогащённого урана (точнее диоксида урана UO 2 или окиси-закиси урана U 2 O 2 ) изготавливают тепловыделяющие элементы - ТВЭЛы - цилиндрические таблетки диаметром 9 мм и высотой 15-30 мм. Эти таблетки помещают в герметические циркониевые (поглощение нейтронов цирконием в 32,5 раза меньше чем сталью) тонкостенные трубки длиной около 4 м. ТВЭЛы собирают в тепловыделяющие сборки (ТВС) по несколько сотен штук.

Все дальнейшие процессы расщепления ядер 235 U с образованием осколков деления, радиоактивных газов и т.д. происходят внутри герметичных трубок ТВЭЛов .

После постепенного расщепления 235 U и уменьшения его концентрации до 1,26%, когда мощность реактора существенно уменьшается, ТВС извлекают из реактора , некоторое время хранят в бассейне выдержки, а затем направляют на радиохимический завод для переработки.

Таким образом, в отличие от ТЭС, где топливо стремятся сжигать полностью, на АЭС невозможно расщепить ядерное топливо на 100%. Поэтому на АЭС нельзя рассчитать КПД по удельному расходу условного топлива. Для оценки эффективности работы энергоблока АЭС используется КПД нетто

,

где - выработанная энергия, - выделившееся в реакторе тепло заодно и тоже время.

Подсчитанный таким образом КПД АЭС составляет 30 - 32 %, но сравнивать его с КПД ТЭС, составляющим 37 - 40 %, не вполне правомочно.

Кроме изотопа урана 235 в качестве ядерного топлива также используются:

  • изотоп урана 233 ( 233 U ) ;
  • изотоп плутония 239 ( 239 Pu );
  • изотоп тория 232 ( 232 Th ) (посредством преобразования в 233 U ).

Парогазовые электростанции представляют собой сочетание паровых и газовых турбин. Такое объединение позволяет снизить потери отработавшей теплоты газовых турбин или теплоты уходящих газов паровых котлов, что обеспечивает повышение КПД парогазовых установок (ПГУ) по сравнению с отдельно взятыми паротурбинными и газотурбинными установками.

В настоящее время различают парогазовые установки двух типов:

а) с высоконапорными котлами и со сбросом отработавших газов турбины в топочную камеру обычного котла;

б) с использованием теплоты отработавших газов турбины в котле.

Принципиальные схемы ПГУ этих двух типов представлены на рис. 2.7 и 2.8.

На рис. 2.7 представлена принципиальная схема ПГУ с высоконапорным паровым котлом (ВПГ) 1 , в который подается вода и топливо, как и на обычной тепловой станции для производства пара. Пар высокого давления поступает в конденсационную турбину 5 , на одном валу с которой находится генератор 8 . Отработавший в турбине пар поступает сначала в конденсатор 6 , а затем с помощью насоса 7 направляется снова в котел 1 .

Рис 2.7. Принципиальная схема пгу с впг

В то же время образующиеся при сгорании топлива в котле газы, имеющие высокую температуру и давление, направляются в газовую турбину 2 . На одном валу с ней находятся компрессор 3 , как в обычной ГТУ, и другой электрический генератор 4 . Компрессор предназначен для нагнетания воздуха в топочную камеру котла. Выхлопные газы турбины 2 подогревают также питательную воду котла.

Такая схема ПГУ обладает тем преимуществом, что в ней не требуется дымососа для удаления отходящих газов котла. Следует заметить, что функцию дутьевого вентилятора выполняет компрессор 3 . КПД такой ПГУ может достигать 43 %.

На рис. 2.8 показана принципиальная схема другого типа ПГУ. В отличие от ПГУ, представленной на рис. 2.7, газ в турбину 2 поступает из камеры сгорания 9 , а не из котла 1 . Далее отработавшие в турбине 2 газы, насыщенные до 16―18 % кислородом благодаря наличию компрессора, поступают в котел 1 .

Такая схема (рис. 2.8) обладает преимуществом перед рассмотренной выше ПГУ (рис. 2.7), так как в ней используется котел обычной конструкции с возможностью использования любого вида топлива, в том числе и твердого. В камере сгорания 3 при этом сжигается значительно меньше, чем в схеме ПГУ с высоконапорным паровым котлом, дорогостоящего в настоящее время газа или жидкого топлива.

Рис 2.8. Принципиальная схема пгу (сбросная схема)

Такое объединение двух установок (паровой и газовой) в общий парогазовый блок создает возможность получить также и более высокие маневренные качества по сравнению с обычной тепловой станцией.

Принципиальная схема атомных электростанций

По назначению и технологическому принципу действия атомные станции практически не отличаются от традиционных тепловых станций. Их существенное различие заключается, во-первых, в том, что на АЭС в отличие от ТЭС пар образуется не в котле, а в активной зоне реактора, а во-вторых, в том, что на АЭС используется ядерное топливо, в состав которого входят изотопы урана-235 (U-235) и урана-238 (U-238).

Особенностью технологического процесса на АЭС является также образование значительных количеств радиоактивных продуктов деления, в связи с чем атомные станции технически более сложны по сравнению с тепловыми станциями.

Схема АЭС может быть одноконтурной, двухконтурной и трехконтурной (рис. 2.9).

Рис. 2.9. Принципиальные схемы АЭС

Одноконтурная схема (рис. 2.9,а) наиболее проста. Выделившееся в ядерном реакторе 1 вследствие цепной реакции деления ядер тяжелых элементов тепло переносится теплоносителем. Часто в качестве теплоносителя служит пар, который далее используется как на обычных паротурбинных электростанциях. Однако образующийся в реакторе пар радиоактивен. Поэтому для защиты персонала АЭС и окружающей среды большая часть оборудования должна иметь защиту от излучения.

По двух- и трехконтурной схемам (рис. 2.9,б и 2.9,в) отвод тепла из реактора осуществляется теплоносителем, который затем передает это тепло рабочей среде непосредственно (например, как в двухконтурной схеме через парогенератор 3 ) или через теплоноситель промежуточного контура (например, как в трехконтурной схеме между промежуточным теплообменником 2 и парогенератором 3 ). На рис. 2.9 цифрами 5 , 6 и 7 обозначены конденсатор и насосы, выполняющие те же функции, что и на обычной ТЭС.

Ядерный реактор часто называют «сердцем» атомной электростанции. В настоящее время существует довольно много видов реакторов.

В зависимости от энергетического уровня нейтронов, под воздействием которых происходит деление ядерного топлива, АЭС можно разделить на две группы:

    АЭС с реакторами на тепловых нейтронах ;

    АЭС с реакторами на быстрых нейтронах .

Под воздействием тепловых нейтронов способны делиться лишь изотопы урана-235, содержание которых в природном уране составляет всего 0,7 %, остальные 99,3 % ― это изотопы урана-238. Под воздействием нейтронного потока более высокого энергетического уровня (быстрых нейтронов) из урана-238 образуется искусственное ядерное топливо плутоний-239, которое используется в реакторах на быстрых нейтронах. Подавляющее большинство эксплуатируемых в настоящее время энергетических реакторов относится к первому типу.

Принципиальная схема атомного энергетического реактора, используемого в двухконтурной схеме АЭС, представлена на рис. 2.10.

Ядерный реактор состоит из активной зоны, отражателя, системы охлаждения, системы управления, регулирования и контроля, корпуса и биологической защиты.

Активная зона реактора - область, где поддерживается цепная реакция деления. Она слагается из делящегося вещества, замедлителя и отражателя нейтронов теплоносителя, регулирующих стержней и конструкционных материалов. Основными элементами активной зоны реактора, обеспечивающими энерговыделение и самоподдерживающими реакцию, являются делящееся вещество и замедлитель. Активная зона отдалена от внешних устройств и работы персонала зоной защиты.

В зависимости от чего выбираются парогазовые циклы , какой выбор будет оптимальным, и как будет выглядеть технологическая схема ПГУ?

Как только становятся известны паритет капитала и конфигу­рация в отношении расположения валов, можно приступить к пред­варительному выбору цикла.

Диапазон простирается от очень про­стых “циклов одного давления” до чрезвычайно сложных “циклов тройного давления с промежуточным перегревом”. Коэффициент полезного действия цикла с увеличением комплексности повы­шается, однако капитальные затраты также возрастают. Ключом выбора правильного цикла является определение такого цикла давления, который лучше всего подходит для заданного коэф­фициента полезного действия и заданных показателей затрат.

Парогазовая установка с циклом одного давления

Этот цикл часто используется для более благоприятного в цене топ­лива ухудшенного качества, как например, сырая нефть и тяже­лое нефтяное топливо с высоким содержанием серы.

По сравнению со сложными циклами инвестиции в ПГУ про­стых циклов незначительны.

На схеме изображена ПГУ с дополнительным змеевиком-испарителем на холодном конце кот­ла-утилизатора. Этот испаритель отбирает у отработавших газов дополнительное тепло и отдает пар деаэратору с целью использо­вания его для подогрева питательной воды.

Благодаря этому отпа­дает необходимость в отборе пара для деаэратора из паровой тур­бины. Результатом по сравнению с простейшей схемой одного давления является улучшение коэффициента полезного действия, однако соответственно повышаются капитальные вложения.

ПГУ с циклом двух давлений

Большинство находящихся в эксплуатации комбинирован­ных установок имеют циклы двойного давления. Вода подается двумя отдельными питательными насосами в экономайзер двой­ного давления.

Читайте также: Как выбрать газотурбинную установку для станции с ПГУ

Вода низкого давления поступает затем в первый змеевик испарителя, а вода высокого давления нагревается в эко­номайзере, прежде чем она испарится и перегреется в горячей части котла-утилизатора. Отбор из барабана низкого давления снабжает паром деаэратор и паровую турбину.

Коэффициент полезного действия цикла двойного давления, как показано на Т-S-диаграмме на рисунке, выше, чем КПД цикла одного давления, из-за более полного использования энер­гии отработавших газов газовой турбины (дополнительная пло­щадь СС"Д"Д).

Однако при этом увеличиваются капитальные вложения на дополнительное оборудование, например, на питательные на­сосы, экономайзеры двойного давления, испарители, низкона­порные трубопроводы и два паропровода НД к паровой турбине. Поэтому рассматриваемый цикл применяют только при высо­ком паритете капитала.

ПГУ с циклом тройного давления

Это одна из наиболее сложных схем, которые находят применение в настоящее время. Она применяется в случаях очень высокого паритета капитала, при этом высокий коэффициент полезно­го действия может быть получен только с высокими затратами.

К котлу-утилизатору добавляется третья ступень, которая до­полнительно использует теплоту отработавших газов. Насос высокого давления подает питательную воду в трехступенча­тый экономайзер высокого давления и далее в барабан - се­паратор высокого давления. Питательный насос среднего дав­ления подает воду в барабан - сепаратор среднего давления.

Часть питательной воды от насоса среднего давления через дрос­сельное устройство поступает в барабан - сепаратор низкого давления. Пар из барабана высокого давления поступает в паро­перегреватель и затем в часть высокого давления паровой турби­ны. Отработавший в части высокого давления (ЧВД) пар сме­шивается с паром, поступившим из барабана среднего давления, перегревается и поступает на вход части низкого давления (ЧНД) паровой турбины.

Читайте также: Зачем строить Парогазовые ТЭЦ? В чем преимущества парогазовых установок.

Коэффициент полезного действия может быть дополнитель­но повышен за счет подогрева топлива водой высо­кого давления перед его поступлением в газовую турбину.

Диаграмма выбора цикла

Типы циклов, начиная с цикла одного давления и кончая цик­лом тройного давления с промежуточным перегревом, представле­ны как функции паритета напитала.

Цикл выбирается путем опре­деления, какие из циклов соответствуют данному показателю паритета капитала для конкретного случая применения. Если, на­пример, паритет капитала составляет 1800 дол. США/кВт, то выбирается цикл двойного или тройного давления.

В первом при­ближении решение принимается в пользу цикла тройного давле­ния, так как при неизменном паритете капитала коэффициент полезного действия и мощность выше. Однако при более точном рассмотрении параметров может оказаться, что для удовлетво­рения других требований более целесообразным является выбор цикла двойного давления.

Существуют случаи, для которых диаграмма выбора цикла неприменима. Наиболее часто встречающимся примером подоб­ного случая является ситуация, когда заказчик хочет иметь в рас­поряжении электрическую мощность как можно скорее и оптимизация для него менее важна, чем короткие сроки поставки.

В зависимости от обстоятельств может оказаться целесообразным циклу с несколькими давлениями предпочесть цикл с одним давлением, так как затраты времени меньше. Для этой цели можно разработать серию стандартизированных циклов с заданными па­раметрами, которые с успехом находят применение в подобных случаях.

(Visited 2 507 times, 1 visits today)

К сожалению, переход на сооружение парогазовых ТЭЦ (ПГУ ТЭЦ) вместо паротурбинных привел к еще более резкому снижению теплофикации в общем производстве энергии. Это, в свою очередь, приводит к повышению энергоемкости ВВП и снижению конкурентоспособности отечественной продукции, а также увеличению затрат на жилищно-коммунальные нужды.

¦ высокий КПД выработки электроэнергии на ПГУ ТЭЦ по конденсационному циклу до 60%;

¦ трудности размещения ПГУ ТЭЦ в условиях плотной городской застройки, а также рост поставок топлива в города;

¦ по сложившейся традиции ПГУ ТЭЦ оснащаются, также как и паротурбинные станции, теплофикационными турбинами типа Т.

Строительство ТЭЦ с турбинами типа Р, начиная с 1990-х гг. прошлого века, было практически прекращено. В доперестроечное время около 60% тепловой нагрузки городов приходилось на долю промышленных предприятий. Их потребность в тепле для осуществления технологических процессов в течение года была достаточно стабильной. В часы утреннего и вечернего максимумов электропотребления городов пики электроснабжения сглаживались путем введения соответствующих режимов ограничения поставок электрической энергии промышленным предприятиям. Установка на ТЭЦ турбин типа Р была экономически оправдана из-за их меньшей стоимости и более эффективного расходования энергоресурсов по сравнению с турбинами типа Т. парогазовый энергоресурс топливо

Последние 20 лет из-за резкого спада промышленного производства существенно изменился режим энергоснабжения городов. В настоящее время городские ТЭЦ работают по отопительному графику, при котором летняя тепловая нагрузка составляет всего 15-20% расчетной величины. Суточный график электропотребления стал более неравномерным из-за включения электрической нагрузки населением в вечерние часы, который связан со шквальным ростом оснащения населения электрической бытовой техникой. Кроме того, выравнивание графика энергопотребления за счет введения соответствующих ограничений промышленных потребителей из-за их малой доли в общем энергопотреблении оказалось невозможным. Единственным не очень эффективным способом решения проблемы явилось сокращение вечернего максимума за счет введения сниженных тарифов в ночные часы .

Поэтому в паротурбинных ТЭЦ с турбинами типа Р, где выработка тепловой и электрической энергии жестко взаимосвязаны, применение таких турбин оказалось нерентабельным. Противодавленческие турбины производятся теперь только малой мощности для повышения эффективности работы городских паровых котельных путем перевода их в режим когенерации.

Такой установившийся подход сохранился и на сооружении ПГУ ТЭЦ. Вместе с тем при парогазовом цикле жесткая взаимосвязь между отпуском тепловой и электрической энергии отсутствует. На этих станциях с турбинами типа Р покрытие вечернего максимума электрической нагрузки может осуществляться путем временного увеличения отпуска электроэнергии в газотурбинном цикле. Кратковременное снижение отпуска тепла в систему теплоснабжения не сказывается на качестве отопления благодаря теплоаккумулирующей способности зданий и тепловой сети.

Принципиальная схема ПГУ ТЭЦ с противодавленческими турбинами включает две газовые турбины, котел-утилизатор, турбину типа Р и пиковый котел (рис. 2). Пиковый котел, который может быть установлен вне площадки ПГУ, на схеме не показан .

Из рис. 2 видно, что ПГУ ТЭЦ состоит из газотурбинной установки в составе компрессора 1, камеры сгорания 2 и газовой турбины 3. Выхлопные газы из ГТУ направляются в котел-утилизатор (КУ) 6 или в байпасную трубу 5 в зависимости от положения шибера 4 и проходят ряд теплообменников, в которых вода нагревается, пар сепарируется в барабанах низкого 7 и высокого давления 8, направляется в паротурбинную установку (ПТУ) 11. Причем насыщенный пар низкого давления поступает в промежуточный отсек ПТУ, а пар высокого давления предварительно перегревается в котле-утилизаторе и направляется в голову ПТУ Выходящий из ПТУ пар конденсируется в теплообменнике сетевой воды 12 и конденсатными насосами 13 направляется в газовой подогреватель конденсата 14, а затем направляется в деаэратор 9 и из него в КУ.

При тепловой нагрузке, не превышающей базовую, станция работает полностью по отопительному графику (АТЭЦ=1). Если тепловая нагрузка превышает базовую, включается пиковый котел. Потребное количество электроэнергии поступает от внешних источников генерации по городским электрическим сетям.

Однако возможны ситуации, когда потребность в электроэнергии превышает объем ее подачи от внешних источников: в морозные дни при росте потребления электроэнергии бытовыми нагревательными приборами; при авариях на генерирующих мощностях и в электрических сетях. В таких ситуациях величина мощности газовых турбин при традиционном подходе тесно привязана к производительности котла- утилизатора, которая в свою очередь диктуется потребностью в тепловой энергии в соответствии с отопительным графиком и может оказаться недостаточной для удовлетворения возросшего спроса на электроэнергию.

Чтобы покрыть возникший дефицит электроэнергии, газовая турбина переключается частично на сброс отработанных продуктов сгорания помимо котла-утилизатора непосредственно в атмосферу. Таким образом, ПГУ ТЭЦ переводится временно в смешанный режим - с парогазовым и газотурбинным циклами.

Известно, что газотурбинные установки обладают высокой маневренностью (скорости набора и сброса электрической мощности). Поэтому еще в советское время их предполагалось наряду с гидроаккумулирующими станциями использовать для сглаживания режима электроснабжения.

Кроме того, надо отметить, что развиваемая ими мощность увеличивается с понижением температуры наружного воздуха и именно при низких температурах в самое холодное время года наблюдается максимум электропотребления. Это показано в таблице .

При достижении мощности, составляющей более 60% от расчетной величины, выбросы вредных газов NOx и CO минимальны (рис. 3).

В межотопительный период, чтобы не допустить снижения мощности газовых турбин более чем на 40%, одна из них отключается.

Повышение энергетической эффективности ТЭЦ может быть достигнуто за счет централизованного холодоснабжения городских микрорайонов . При аварийных ситуациях на ПГУ ТЭЦ целесообразно в отдельных зданиях строить газотурбинные установки малой мощности .

В районах плотной городской застройки крупных городов при реконструкции существующих ТЭЦ с паровыми турбинами, выработавшими свой ресурс, целесообразно создавать на их базе ПГУ ТЭЦ с турбинами типа Р. В результате высвобождаются значительные площади, занятые системой охлаждения (градирни и др.), которые могут быть использованы для других целей.

Сопоставление ПГУ ТЭЦ с турбинами с противодавлением (типа Р) и ПГУ ТЭЦ с конденсационно-отборными турбинами (типа Т) позволяет сделать следующие выводы.

  • 1. И в том, и в другом варианте коэффициент полезного использования топлива зависит от доли выработки электроэнергии на базе теплового потребления в общем объеме генерации.
  • 2. В ПГУ ТЭЦ с турбинами типа Т потери тепловой энергии в контуре охлаждения конденсата имеют место в течение всего года; наибольшие потери - в летний период, когда размер теплового потребления ограничен только горячим водоснабжением.
  • 3. В ПГУ ТЭЦ с турбинами типа Р КПД станции снижается только в ограниченный промежуток времени, когда необходимо покрыть возникший дефицит в электроснабжении.
  • 4. Маневренные характеристики (скорости набора и сброса нагрузки) газовых турбин многократно выше характеристик паровых турбин.

Таким образом, для условий строительства станций в центрах больших городов ПГУ ТЭЦ с противодавленческими турбинами (типа Р) превосходят парогазовые ТЭЦ с конденсационноотборными турбинами (типа Т) по всем показателям. Для их размещения требуется значительно меньшая территория, они более экономично расходуют топливо и их вредное воздействие на окружающую среду также меньше.

Однако, для этого необходимо внести соответствующие изменения в нормативную базу по проектированию парогазовых станций.

Практика последних лет показывает, что инвесторами, сооружающими загородные ПГУ ТЭЦ и на достаточно свободных территориях, приоритет отдается выработке электроэнергии, а отпуск тепла рассматривается ими как побочный вид деятельности. Объясняется это тем, что КПД станций даже в конденсационном режиме может достигать 60%, а сооружение теплотрасс требует дополнительных затрат и многочисленных согласований с разными структурами. В итоге коэффициент теплофикации АТЭЦ может быть меньше 0,3.

Поэтому при проектировании ПГУ ТЭЦ нецелесообразно для каждой отдельной станции закладывать в техническом решении оптимальное значение АТЭЦ. Задача заключается в нахождении оптимальной доли теплофикации в системе теплоснабжения всего города.

Сейчас вновь стала актуальной разработанная в советское время концепция строительства мощных ТЭЦ в местах добычи топлива, вдали от больших городов. Это диктуется как увеличением доли использования местных видов топлива в ТЭК регионов, так и созданием новых конструкций теплопроводов (воздушная прокладка) с практически ничтожным падением температурного потенциала при транспортировке теплоносителя.

Подобные ТЭЦ могут создаваться как на основе паротурбинного цикла с непосредственным сжиганием местного топлива, так и парогазового цикла с использованием газа, получаемого на газогенераторных установках.




Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Все о бизнесе