Все о бизнесе

Парфеньева И.Е. ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ. М.: Учебное пособие, 2009

1. Общая характеристика обработки резанием

Общая характеристика обработки резанием. Сущность процесса резания. Виды стружек. Силы резания. Тепловые явления процесса резания. Наростообразование при резании. Вибрации при резании.

1.1. Общие сведения

Обработка металлов резанием – это процесс срезания режущим инструментом с поверхности заготовки слоя металла в виде стружки для получения необходимой геометрической формы, точности размеров, взаиморасположения и шероховатости поверхностей детали.

Заготовками для деталей служат отливки, поковки и штамповки, сортовой прокат. Используются как черные так и цветные металлы.

Слой металла, удаляемый с заготовки при резании, называется припуском .

В зависимости от применяемого инструмента различают следующие виды обработки материалов резанием:

1. Лезвийная обработка (резцы, фрезы, сверла и др.)

2. Абразивная обработка (круги, бруски, пасты и др.)

3. В физико-химических средах (электролиты, плазма, луч лазера и др.).

1.2.Сущность процесса резания

Резание металлов – сложный процесс взаимодействия режущего инструмента и заготовки, сопровождающийся определенными физическими явлениями. Упрощенно процесс резания можно представить в виде следующей схемы (рис.1.). В начальный момент процесса резания движущийся резец под действием силы Р вдавливается в металл, в срезаемом слое возникают упругие деформации. При дальнейшем движении резца упругие деформации, накапливаясь по абсолютной величине, переходят в пластические. В прирезцовом срезаемом слое материала заготовки возникает сложное упругонапряженное состояние. В плоскости, перпендикулярной траектории движения резца, возникают нормальные напряжения , а в плоскости, совпадающей с траекторией движения резца, - касательные напряжения . Наибольшие касательные напряжения действуют у вершины резца А , уменьшаясь до нуля по мере удаления от нее. Нормальные напряжения вначале действуют как растягивающие, а затем быстро уменьшаются и, переходя через нулевое значение, превращаются в напряжения сжатия.

Под действием нормальных и касательных напряжений срезаемый слой пластически деформируется. Рост пластической деформации приводит к сдвиговым деформациям, т.е. к смещению частей кристаллов относительно друг друга. Это происходит, когда возникающие напряжения превосходят предел прочности обрабатываемого материала. Сдвиговые деформации происходят в зоне стружкообразования АВС , причем они начинаются в плоскости АВ и заканчиваются в плоскости АС – скалыванием элементарного объема металла и образованием стружки. Далее процесс повторяется и образуется следующий элемент стружки и т.д.

Условно принято считать, что сдвиговые деформации происходят по плоскости ОО , которую называют плоскостью сдвига. Плоскость сдвига ОО располагается примерно под углом = 30? к направлению движения резца. Угол называют углом сдвига. Он не зависит от геометрических параметров режущего инструмента и свойств обрабатываемого материала.

Срезанный и превращенный в стружку слой металла дополнительно деформируется вследствие трения стружки о переднюю поверхность инструмента.

Рис.1. Схема упругонапряженного состояния металла при обработке резанием

Структура металла зоны АВС и стружки резко отличаются от структуры основного металла. Структура основного металла состоит из равноосных зерен. В зоне АВС зерна сильно измельчены и вытянуты в определенном направлении, совпадающем с направлением плоскости О1 О1 , которая с плоскостью сдвига составляет угол . Для хрупких материалов пластическая деформация практически отсутствует и угол близок к нулю, а при резании деталей из пластичных материалов значение угла доходит до 30 град. У передней поверхности резца слои стружки искривляются и располагаются почти параллельно ей.

Следовательно, резание может быть представлено как процесс последовательного упругого и пластического деформирования срезаемого слоя металла, а затем его разрушения.

1.3. Виды стружек

В зависимости от обрабатываемого материала, условий резания, геометрии режущего инструмента изменяется характер стружки. Стружка при резании может быть (рис.2):

сливная – сходит в виде ленты, закручивающейся в спираль. Поверхность ее, обращенная к резцу, чистая и гладкая. С обратной стороны она имеет небольшие зазубрины. Образуется при обработке пластичных материалов (мягкой стали, латуни, алюминия и др.) со значительными скоростями скольжения и небольшими подачами инструмента с оптимальными передними углами. Образованию сливной стружки способствует увеличение переднего угла , уменьшение толщины среза a , повышение скорости резания, а также увеличение пластичности обрабатываемого материала;

скалывания – состоит из отдельных связанных между собой элементов. Обращенная к резцу сторона ее гладкая, а противоположная имеет большие зазубрины. Образуется при обработке металлов средней твердости с невысокими скоростями резания и значительными подачами резцов, имеющих небольшие передние углы;

надлома – состоит из отдельных не связанных или слабо связанных между собой элементов стружки. Образуется при обработке хрупких материалов (чугуна, бронзы, некоторых сплавов алюминия). Обработанная поверхность имеет большие неровности.

Рис.2. Виды стружек:

a - сливная; б - скалывания; в - надлома

Стружка, образующаяся в процессе резания, подвергается значительной деформации, одним из проявлений которой является ее усадка .

Усадка состоит в том, что длина стружки становится меньше длины обработанной поверхности, а толщина – больше толщины срезанного с заготовки слоя металла. Ширина стружки при этом практически не изменяется. Величина усадки характеризуется коэффициентом усадки:

где Lo – длина обработанной поверхности; L – длина стружки; ho –толщина срезаемого с заготовки слоя; h – толщина стружки.

Величина усадки стружки зависит от свойств обрабатываемого материала, режима резания, геометрических параметров инструмента и др. Для хрупких материалов , для пластичных . Использование СОЖ усадку стружки меньшает.

1.4. Силы резания

При обработке резанием металл оказывает сопротивление режущему инструменту. Это сопротивление преодолевается силой резания, приложенной к передней поверхности инструмента. Сила резания направлена перпендикулярна передней поверхности резца. Сила резания затрачивается на отрыв элемента стружки от основной массы металла и его деформацию, а также на преодоление трения стружки о переднюю поверхность резца и задней поверхности резца о поверхность резания.

В результате сопротивления металла процессу деформирования возникают реактивные силы, действующие на режущий инструмент (рис.3а).

Рис.3. Схема сил, действующих на резец (а ), и разложение силы резания на составляющие (б )

Это силы упругого (Ру1 и Ру2 ) и пластического (Рп1 и Рп2 ) деформирования, векторы которых направлены перпендикулярно к передней и главной задней поверхностям инструмента. Наличие нормальных сил обуславливает возникновение сил трения Т1 и Т2 , направленных по передней и главной задней поверхностям инструмента. Всю указанную систему сил приводят к равнодействующей силе резания: .

Точка приложения силы R находится на рабочей части главной режущей кромки инструмента. Абсолютная величина, точка приложения и направление в пространстве силы R под влиянием ряда факторов (неоднородность структуры и твердости заготовки, непостоянство срезаемого слоя металла и др.) являются переменными. Поэтому для расчетов используют не равнодействующую силу резания R , а ее составляющие, действующие по трем взаимно перпендикулярным направлениям – Рх , Ру , Рz . Для токарной обработки

ось Х – линия центров станка; ось У – горизонтальная линия, перпендикулярная линии центров станка; ось Z – линия, перпендикулярная плоскости ХОУ (рис.3б).

Сила РZ –вертикальная составляющая силы резания или просто сила резания. Действует в плоскости резания в направлении главного движения. По силе Рz определяют крутящий момент на шпинделе станка, эффективную мощность резания, деформацию изгиба заготовки в плоскости ХОZ , изгибающий момент, действующий на стержень резца, а также ведут динамический расчет механизмов коробки скоростей станка.

Сила РУ радиальная составляющая силы резания. Действует перпендикулярно оси обрабатываемой заготовки в плоскости ХОУ. По силе Ру определяют величину упругого отжатия резца от заготовки, ведут расчет технологической системы на жесткость. Сила Ру стремится оттолкнуть резец от заготовки и деформировать ее. Учитывается при расчете прочности станины и суппорта, способствует появлению вибраций.

Сила РХ – осевая составляющая силы резания. Действует вдоль оси заготовки параллельно направлению продольной подачи. По силе Рz рассчитывают механизм подачи станка, а также изгибающий момент, действующий на стержень резца.

Равнодействующая силы резания определяется как диагональ параллепипеда, построенного на составляющих сил:

Каждая из составляющих силы резания определяется по эмпирическим формулам вида: , Н

где – коэффициент, учитывающий физико-механические свойства материала обрабатываемой заготовки;

– коэффициент, учитывающий факторы, не вошедшие в формулу (величины углов резца, материал резца и др.)

– глубина резания, мм;

S – подача, мм/об;

V – скорость резания, м/мин;

Показатели степеней.

Величины коэффициентов и показателей степеней выбираются из справочников для конкретных условий обработки. Аналогичные формулы существуют и для определения сил Ру и Рz .

Между указанными силами имеется примерно следующее соотношение:

Крутящий момент на шпинделе станка: , н·м,

где D заг –диаметр заготовки, мм

Эффективной мощностью N е называют мощность, расходуемую на процесс деформирования и срезания с заготовки слоя металла. При точении цилиндрическойповерхности на токарно-винторезном станке эффективная мощность

, кВт

где n –частота вращения заготовки, об/мин.

Величина мощности от силы составляет 1-2% от всей мощности. Поэтому ею пренебрегают и мощность N е определяют по формуле:

Мощность, расходуемая электродвигателем ,

где - к.п.д. станка, равный 0,7 – 0,8.

1.5. Тепловые явления процесса резания

При резании вся механическая работа превращается в тепловую энергию. Количество теплоты Q , выделяющееся при резании в единицу времени (тепловая мощность), определяется по формуле: , Дж,

где РZ - сила резания, V - скорость резания.

Образующееся в зоне резания тепло распределяется между заготовкой, стружкой, режущим инструментом и окружающей средой.

Причинами образования теплоты являются упругопластическое деформирование в зоне стружкообразования, трение стружки о переднюю поверхность инструмента, трение задних поверхностей инструмента о заготовку. Тепловой баланс процесса резания можно представить следующим тождеством:

где: Q Д – количество теплоты, выделяющейся при упругопластическом деформировании обрабатываемого материала;

Q П.П – количество теплоты, выделяющейся при трении стружки о переднюю поверхность инструмента;

Q З.П . – количество теплоты, выделяющейся при трении задних поверхностей инструмента о заготовку;

Q С – количество теплоты, отводимое стружкой;

Q И – количество теплоты, отводимое режущим инструментом;

Q Л – количество теплоты, переходящее в окружающую среду (теплота лучеиспускания).

По данным многих исследований, количество теплоты, отводимое стружкой, составляет (25-85)% всей выделяющейся теплоты, заготовкой (10-50)%, режущим инструментом (2-8)%. Количественное распределение теплоты зависит главным образом от скорости резания (рис.4). С увеличением скорости резания отводимое стружкой тепло увеличивается, а заготовкой, инструментом, окружающей средой – уменьшается.

Рис.4. Распределение теплоты резания в зависимости от скорости резания

Соотношение членов в уравнении теплового баланса не постоянны и изменяются в зависимости от физико-механических свойств обрабатываемого материала, условий резания и материала инструмента, условий обработки и др.

Увеличение подачи S повышает температуру в зоне резания, но менее интенсивно, чем при увеличении скорости резания V . Еще меньшее влияние на температуру оказывает глубина резания t .

Влияние геометрии резца:

1.С увеличением угла резания и угла в плане температура в зоне резания возрастает.

2.С увеличением радиуса закругления при вершине температура в зоне резания уменьшается.

Теплообразование отрицательно влияет на процесс обработки. Обработка должна производится без перегрева режущего инструмента. Так для работы инструмента из углеродистой стали температура в зоне резания не должна превышать (200-250)град C, из быстрорежущей стали (550-600) град C, инструментом, оснащенным твердыми сплавами – (800-1000) град C, а минералокерамикой – (1000-1200) град C; абразивными материалами – (1800-2000) град C. Нагрев инструмента выше указанных температур вызывает структурные превращения в материале, из которого инструмент изготовлен, снижение его твердости и потерю его режущих способностей. Также происходит изменение геометрических размеров инструмента, что влияет на точность размеров и геометрическую форму обработанных поверхностей. Нагрев заготовки вызывает изменение ее геометрических размеров. Вследствие жесткого закрепления заготовки на станке она начинает деформироваться. А это приведет к снижению точности обработки.

Для уменьшения отрицательного влияния теплоты на процесс резания обработку следует вести в условиях применения смазочно-охлаждающих сред (СОЖ).

1.6. Наростообразование при резании

При резании пластичных материалов (сталь, латунь) происходит явление, получившее название наростообразования, когда на передней поверхности резца у режущей кромки образуется плотное скопление частиц металла, прочно укрепляющееся на передней поверхности инструмента. Образование нароста объясняется тем, что при некоторых условиях обработки (высокие давления, значительные температуры в зоне контакта стружки с резцом) силы трения между передней поверхностью инструмента и срезанным слоем металла становятся больше сил внутреннего сцепления, и при определенных температурных условиях металл прочно оседает на передней поверхности инструмента. Размеры и форма нароста постоянно меняются. Он периодически разрушается, уносится стружкой и образуется вновь.

Рис.5. Схема образования нароста

Металл нароста деформирован, и твердость его значительно (иногда в 2-3 раза) превосходит твердость обрабатываемого металла.

Угол резания на наросте меньше угла резания на резце , вследствие этого несколько уменьшаются затраты мощности на резание. Нарост защищает вершину резца и режущую кромку от преждевременного изнашивания. Точность и качество обработки поверхностей при наросте ухудшаются. Возрастает шероховатость поверхностей. Поэтому при черновой обработке, где качество поверхности не имеет особого значения, нарост благоприятно влияет на резание, а при чистовой обработке, когда качество обработанной поверхности важно, образование нароста вредно и его следует избегать.

Установлено, что интенсивность образования нароста в значительной степени зависит от скорости резания. Наибольшее наростообразование имеет место при скоростях резания 18-30 м/мин, а при скоростях резания до 10-12 м/мин и более 50-70 м/мин нарост на режущем инструменте практически не образуется. Поэтому чистовую обработку выполняют на повышенных скоростях резания.

С увеличением подачи S размеры нароста увеличиваются. Поэтому при чистовой токарной обработке рекомендуются подачи 0,1 - 0,2 мм/об.

Глубина резания t существенного влияния на размеры нароста не оказывает.

С увеличением угла резания нарост увеличивается. Применение СОЖ уменьшает нарост.

При прерывистом резании (строгание, фрезерование) нарост обычно не удерживается на режущей кромке.

1.7. Вибрации при резании

Вследствие нежесткости элементов технологической системы СПИД (станок–приспособление–инструмент–деталь) всегда возникают колебания инструмента относительно заготовки, которые называют вибрациями при резании.

Вибрации отрицательно влияют на процесс резания:

  • снижают качество обработанной поверхности
  • усиливается динамический характер силы резания, а нагрузки на движущиеся детали и сборочные единицы станка усиливаются в десятки раз – особенно в условиях резонанса, когда частота собственных колебаний системы СПИД совпадает с частотой колебаний при обработке резанием
  • резко снижается стойкость инструмента, особенно с пластинками из твердых сплавов
  • возникает шум, утомляюще действующий на окружающих людей, и производительность труда снижается.

Основные меры борьбы с вибрациями:

  • повышение жесткости технологической системы
  • уменьшение массы колебательных систем
  • применение виброгасителей (динамических, гидравлических, упругих)
  • подбор оптимальных режимов резания и геометрии режущего инструмента.

Однако при обработке труднообрабатываемых материалов вибрации играют положительную роль. Для обработки таких материалов применяют вибрационное резание. Сущность вибрационного резания состоит в том, что в процессе обработки создаются искусственные колебания инструмента с регулируемой частотой и заданной амплитудой в определенном направлении. Источники колебаний – механические вибраторы или высокочастотные генераторы. Частоту колебаний задают от 200 до 20000 Гц, амплитуду колебаний – от 0,02 до 0,002 мм. Колебания задают по направлению подачи или по направлению скорости резания.

Fireline

Лекция № 3

Сущность процессов резания

3.1.Конструкционные и инструментальные материалы

3.2. Процесс резания

3.3. Физические явления, сопровождающие процесс резания

Конструкционные и инструментальные материалы

Резанием обрабатываются заготовки, полученные из следующих конструкционных материалов – углеродистые стали качественные и обыкновенного качества, легированные стали, теплостойкие стали и труднообрабатываемые материалы.

Широкое распространение имеет углеродистая сталь, как соединение железа (Fe) с углеродом (C), содержание которого в стали не более 0,7%. Эталонной углеродистой сталью является сталь 45, обрабатываемость которой принята за единицу.

Режущие инструменты изготавливаются из инструментальных материалов следующих типов:

Ø инструментальные стали,

Ø твердые сплавы,

Ø металлокерамика,

Ø алмазы,

Ø сверхтвердые материалы (эльбор),

Ø абразивные материалы.

Основные требования к инструментальным материалам – это высокие физико-технические характеристики по прочности, твердости и теплостойкости. Физико-технические характеристики инструментальных материалов должны быть в 2 раза выше таких же характеристик обрабатываемых заготовок.

Инструментальные стали получили широкое распространение для изготовления массовых типов режущего инструмента. Основными инструментальными сталями являются:

Ø Углеродистые стали марок – У7, У8…У13.

Ø Легированные стали марок – ШХ-15, 9ХС, ХВГ.

Ø Быстрорежущие стали марок – Р18, Р6М5, Р6М5К5.

Процесс резания

Процессом резания называется работа, выполняемая режущим инструментом по отделению припуска от заготовки в виде стружки и преодолению сил трения.

Главным элементом режущего инструмента является режущий клин.

Главным параметром режущего клина является угол заострения (β)

Главными углами режущего клина являются:

· передний угол (α)

· задний угол (γ)

β + α + γ= 90°

Рис. 1. Параметры режущего клина

Рис.2. Схема режущего клина

На схеме режущего клина показаны главные поверхности и углы.

Линия 1,2 – это след плоскости, которая называется передней поверхностью.

Линия 3,4 – это след плоскости, которая называется задней поверхностью.

Эти две поверхности фактически никогда не сходятся в точку, так как между ними, при заточке режущего клина образуется радиусное сопряжение величиной до 500 мкм, определяемое кристаллической решеткой инструментального материала.

Такая форма режущего клина характерна для всех видов режущих инструментов, при работе которых происходит отделение припуска в виде стружки.

Стружкообразование

Слой металла, удаляемый с заготовки с целью придания ей формы и размеров готовой детали, называется припуском.

В процессе резания припуск превращается в стружку. Припуск может сниматься как за один , так и за несколько проходов режущего клина.

На обрабатываемой заготовке различают следующие поверхности:

ü обработанную – поверхность, с которой снята стружка;

ü обрабатываемую – поверхность, с которой снимается стружка;

ü поверхность резания , образованную непосредственно режущей кромкой режущего инструмента.

Изобразим графически (Рис.3.) отделение припуска от основной заготовки


Рис.3. Схема отделения припуска от основной заготовки

На схеме обозначены точками следующие элементы:

3,5 – обработанная поверхность

7,8 – обрабатываемая поверхность

3,8,9,2 – зона деформации

2,9,10,11,2 – стружка

1,2,3,4 – режущий клин

6,7,8,3 – припуск

1,2 – передняя поверхность режущего клина

3,4 – задняя поверхность режущего клина

r – радиус закругления режущей кромки

α – передний угол

β – угол заострения

γ – задний угол

В процессе резания на вершине режущего клина возникает сила резания R, преодолевающая силу сопротивления припуска отделению от заготовки и силы трения стружки о переднюю поверхность и трения задней поверхности режущего клина об обработанную поверхность. При этом в снимаемом припуске протекают сложные процессы упругого и пластического деформирования. Укажем на представленном выше рисунке 3. две зоны деформации припуска.

8,9 – зона пластической деформации

9,10 – зона сдвига частиц снимаемого припуска по плоскостям межкристаллических связей (12,13).

Рис. 4. Виды стружки.

В процессе резания заготовка и режущий инструмент находятся в относительном движении. Процесс резания выполняется при наличии основных и вспомогательных движений.

Основные движения, совершаемые заготовкой и режущим инструментом, делятся на главное движение и движение подачи.

Главное движение – это движение заготовки или инструмента, совершаемое с наибольшей скоростью.

Главное движение обозначается Dr. Главное движение - скорость наибольшая.

Движение подачи имеет меньшую скорость – скорость подачи S. Это движение обеспечивает врезание режущего клина инструмента в новые слои металла и обозначается DS. Движение подачи обеспечивает врезание в новые слои металла

По характеру и Dr, и DS могут быть вращательными или прямолинейно-поступательными.

При разных методах обработки главное движение и движение подачи осуществляются или обрабатываемой заготовкой, или режущим инструментом.

Например:

· при точении Dr совершается заготовкой, а DS – режущим инструментом (резцом) рис. 4.

Рис. 4 Схема точения.

· при цилиндрическом фрезеровании Dr совершается режущим инструментом (фрезой), а DS – заготовкой; Рис. 5.

Рис. 5 Схемы обработки резанием

· при сверлении, возможно, что оба движения совершает режущий инструмент (сверло), а заготовка неподвижна.

Совокупность движений Dr и DS обеспечивает получение поверхности требуемой формы. С учетом величины скорости и направлений движений Dr и DS можно рассматривать результирующее движение De.

De – суммарное движение режущего инструмента относительно движущейся заготовки. Движение De характеризуется скоростью результирующего движения Ue .

Эффективность и производительность процесса резания зависит от:

Ø физико-технических свойств металла (материала заготовки и инструмента) HRC, HB, T °C;

Ø геометрических параметров режущей части инструмента;

Ø параметров режима резания (v, s, t);

Ø условий обработки.

Физические явления, сопровождающие процесс резания

В процессе резания выполняется работа, затрачивается энергия. Эта энергия распределяется между двумя видами работ.

N = Aпол + Aвсп, где:

Апол – полезная работа по отделению припуска от заготовки в виде стружки

Авсп – вспомогательная работа по преодолению сил трения, сил сопротивления упругой и пластичной деформации.

Совершаемая работа сопровождается целым комплексом физических явлений.

Основными физические явлениями, сопровождающими процесс резания, являются:

1. сила резания (R)

2. температура резания (T ˚С)

3. износ инструмента (режущего клина) (h3)

4. усадка стружки (l)

Процесс резания (стружкообразования) является сложным физическим процессом, сопровождающимся большим тепловыделением, деформацией металла при образовании стружки, износом режущего инструмента и наростообразованием на резце. Знание закономерностей процесса резания и сопровождающих его явлений позволяет рационально управлять этим процессом и обрабатывать детали более качественно, производительно и экономично.

В процессе резания различных материалов могут образовываться следующие основные виды стружек: сливные, скалывания и надлома.

Рис 1. Типы стружек: а -- сливная, б -- скалывания, в -- надлома

Сливная стружка (рис. 1 а) образуется при резании вязких и мягких материалов, например мягкой стали, латуни. Резание протекает обычно при высокой скорости. Чем больше скорость резания и вязкость обрабатываемого металла, меньше угол резания и толщина среза, выше качество смазочно-охлаждающей жидкости, тем стружка ближе к сливной.

Стружка надлома (рис. 1 в) образуется при резании хрупких металлов, например серых чугунов. Такая стружка состоит из отдельных, почти не связанных между собой элементов. Обработанная поверхность при образовании такой стружки получается шероховатой, с большими впадинами и выступами. В определенных условиях, например при обработке чугунов средней твердости, стружка надлома может получиться в виде колец. Сходство со сливной стружкой здесь только внешнее, так как достаточно слегка сжать такую стружку в руке и она легко разрушится на отдельные элементы.

Стружка скалывания (рис. 1 б) занимает промежуточное положение между сливной стружкой и стружкой надлома и образуется при обработке некоторых сортов латуни и твердых сталей с большими подачами и относительно малыми скоростями резания. С изменением условий резания стружка скалывания может перейти в сливную и наоборот.

Под действием режущего инструмента срезаемый слой металла подвергается сжатию. Процессы сжатия (как и процессы растяжения) сопровождаются упругими и пластическими деформациями.

При обработке режущий инструмент деформирует не только срезаемый слой, но и поверхностный слой материала обрабатываемой детали. Глубина деформации поверхностного слоя металла зависит от различных факторов и может достигать от сотых долей до нескольких миллиметров.

Под действием деформации поверхностный слой металла упрочняется, увеличивается твердость и уменьшается пластичность, происходит так называемый наклеп обрабатываемой поверхности.

Чем мягче и пластичнее обрабатываемый металл, тем большему наклепу он подвергается. Чугуны обладают значительно меньшей способностью к упрочнению, чем стали. Величина и глубина наклепа увеличиваются с увеличением подачи и глубины резания и уменьшаются с увеличением скорости резания. Глубина наклепа увеличивается примерно в 2--3 раза при работе тупым режущим инструментом, чем при работе острым. Смазочно-охлаждающие жидкости уменьшают глубину и степень упрочнения.

При некоторых условиях резания на передней поверхности режущей кромки резца налипает обрабатываемый материал, образуя так называемый нарост . Он имеет клиновидную форму, по твердости превышает в 2--3 раза твердость обрабатываемого материала. Являясь как бы продолжением резца, нарост изменяет его геометрические параметры (д 1 <д), участвует в резании металла, влияет на результаты обработки, износ резца и силы, действующие на резец.

Усадка стружки является важным параметром, определяющим ход протекания процесса резания. Так, изменение усадки стружки влечет за собой изменение сил резания, качества обработанной поверхности, стойкости режущего инструмента и т. п. Коэффициент усадки стружки определяется отношением длины обработанной поверхности к длине стружки и может быть в пределах от 1,1 до 10. Чем больше коэффициент усадки стружки, тем ниже твердость материала, выше пластичность, а обрабатываемость резанием - лучше.

На коэффициент усадки стружки влияют различные параметры резания, например, при увеличении переднего угла резца коэффициент усадки уменьшается, а при увеличении радиуса закругления вершины резца - увеличивается, при увеличении толщины среза коэффициент усадки уменьшается.

Резание металлов представляет собой сложный процесс, сопровождающийся многими внутренними и внешними явлениями . При этом имеют место три стадии деформации срезаемого слоя: упругая, пластическая, и разрушения.

Характер и величина деформации зависят от физико-химических свойств обрабатываемого материала, режимов резания, геометрии инструмента, применяемых смазочно-охлаждающих жидкостей. Металлические материалы, являясь поликристаллическими телами с зернистой структурой, имея различные кристаллические решетки, по-разному пластически деформируются под действием инструмента; по-разному происходят превращения в срезаемом слое (стружке) и под обработанной поверхностью. При резании металлов и их сплавов отдельные кристаллы деформируются, а затем разрушаются по кристаллографическим плоскостям.

Процесс резания металла можно представить следующей схемой.

Рис. 1, Рис. 2.

В начальный момент, когда движущийся резец под действием силы Р (рис. 1) вдавливается в металл, в срезаемом слое возникают упругие деформации Увеличение же деформирующей силы приведет к внутрикристаллической деформации в зернах, плоскости скольжения в которых расположены менее благоприятно.

Дальнейшее повышение нагрузки вызовет разрушение зерен, а также перемещение и поворот их относительно друг друга. Происходит изменение структуры и физико-механических свойств тела - образование текстуры, возникновение внутренних напряжений, повышение твердости, понижение пластичности, уменьшение теплопроводности.
В плоскости, совпадающей с траекторией движения вершины резца, возникает касательные и нормальные напряжения.
τmax в точке А, по удалению падают.

σy в начале действуют как растягивающие (+σ), что при определенных условиях может вызвать «раскалывание» металла - опережающую трещину в направлении внешней силы.
От в точке А, затем уменьшаются, переходят через 0, превращаются в напряжения сжатия (-σ).
Возрастание пластической деформации приводит к сдвиговым деформациям. Различные физические явления, сопутствующие деформациям срезаемого слоя, находятся в следующей зависимости: характер получающихся стружек, их усадка, завивание, упрочнение.

Выделение тепла, действующего на инструмент, срезаемый слой на обрабатываемую поверхность и прилегающий к ней верхний слой материала изделия.
Образование нароста.

Упрочнение поверхностного слоя, возникновение остаточных напряжений, явление отдыха (разупрочнение и рекристаллизация).
Трение стружки о переднюю поверхность инструмента и трение задней поверхности инструмента о поверхность резания.
Возникновение вибраций.

Наибольшие пластические деформации возникают в зоне стружкообрвзования АВС (рис 1) Зона деформирования ограничивается линией АВ, вдоль которой происходят первые сдвиговые деформации, и линией АС, вдоль которой происходят последние сдвиговые деформации.
В момент, когда пластические деформации достигнут наибольшей величины, а напряжения превысят силы внутреннего сцепления зерен металла, зерна смещаются относительно друг друга и скалывается элементарный объем (Рис 2). Далее процесс деформирования повторяется и образуется стружка.
При больших скоростях резания считают, что сдвиги идут не по АВ и АС, а по 00 -плоскость сдвига, θ-угол сдвига.
Установлено русским К А Тиме, К. А Зворыкиным.

Срезаемый слой, превратившись в стружку, подвергается дополнительной деформации вследствие трения стружки о переднюю поверхность инструмента. Зерна вытягиваются по плоскости О1О, которая составляет с плоскостью сдвига ОО угол β.
Таким образом, резание это процесс последовательного деформирования срезаемого слоя металла; упругого, пластического, разрушения - зависит от свойств материала. У хрупких металлов пластические деформации практически отсутствуют.
Для сталей средней твердости θ-30°, β зависит от свойств обрабатываемого материала и угла резания

Тепловые явления

Механическая работа затрачиваемая на срезание с заготовки припуска превращается в тепловую энергию.
Количество теплоты, выделяющееся в процессе резании, приближенно можно определил, из выражения Q=Pz V Дж/мин. Тепловой баланс процесса резания:

Q=Qд+QП.П+Qз.т=Qс+Qзаг+QИ+QЛ

Qд - количество теплоты, выделяющееся при упруго-пластических деформациях;
QП.П - количество теплоты при трении о переднюю поверхность;
Qз.т - количество теплоты при трении инструмента о заготовку;
Qс -количество теплоты, отводимое стружкой;
Qзаг - количество теплоты, отводимое заготовкой;
QИ - количество теплоты, отводимое инструментом; .
QЛ- теплота лучеиспускания - переходит в окружающую среду.

Значения слагаемых зависят физико-механических свойств материала, инструмента, режимов, геометрии и тд.
В зависимости от режимов стружкой отводится 25-95% всей теплоты, заготовкой -10-50% инструментом 2-8%.
Тепловыделения отрицательно сказываются на процессе резания.

Лезвие нагревается до Т0=800-10000С. Ускоренный износ, структурные превращения приводят к потере режущих свойств.
Изменяются геометрические размеры заготовки Наибольшее влияние на Т 0С оказывает V Наименьшее - глубина резания.

Процесс резания (стружкообразования) является сложным физическим процессом, сопровождающимся большим тепловыделением, деформацией металла при образовании стружки, износом режущего инструмента и наростообразованием на резце. Знание закономерностей процесса резания и сопровождающих его явлений позволяет рационально управлять этим процессом и обрабатывать детали более качественно, производительно и экономично.

В процессе резания различных материалов могут образовываться следующие основные виды стружек: сливные (непрерывные), скалывания (элементные) и надлома (рис. 82).

Рис. 82. Типы стружек : а —сливная, б — скалывания, в — надлома

Сливная стружка (рис. 82, а) образуется при резании вязких и мягких материалов, например мягкой стали, латуни. Резание протекает обычно при высокой скорости. Чем больше скорость резания и вязкость обрабатываемого металла, меньше угол резания и толщина среза, выше качество смазочно-охлаждающей жидкости, тем стружка ближе к сливной.

Стружка надлома (рис. 82, в) образуется при резании хрупких металлов, например серых чугунов. Такая стружка состоит из отдельных, почти не связанных между собой элементов. Обработанная поверхность при образовании такой стружки получается шероховатой, с большими впадинами и выступами. В определенных условиях, например при обработке чугунов средней твердости, стружка надлома может получиться в виде колец. Сходство со сливной стружкой здесь только внешнее, так как достаточно слегка сжать такую стружку в руке и она легко разрушится на отдельные элементы.

Стружка скалывания (рис. 82, б) занимает промежуточное положение между сливной стружкой и стружкой надлома и образуется при обработке некоторых сортов латуни и твердых сталей с большими подачами и относительно малыми скоростями резания. С изменением условий резания стружка скалывания может перейти в сливную и наоборот.

Под действием режущего инструмента срезаемый слой металла подвергается сжатию. Процессы сжатия (как и процессы растяжения) сопровождаются упругими и пластическими деформациями.

При обработке режущий инструмент деформирует не только срезаемый слой, но и поверхностный слой материала обрабатываемой детали. Глубина деформации поверхностного слоя металла зависит от различных факторов и может достигать от сотых долей до нескольких миллиметров.

Под действием деформации поверхностный слой металла упрочняется, увеличивается твердость и уменьшается пластичность, происходит так называемый наклеп обрабатываемой поверхности.

Чем мягче и пластичнее обрабатываемый металл, тем большему наклепу он подвергается. Чугуны обладают значительно меньшей способностью к упрочнению, чем стали. Величина и глубина наклепа увеличиваются с увеличением подачи и глубины резания и уменьшаются с увеличением скорости резания. Глубина наклепа увеличивается примерно в 2—3 раза при работе тупым режущим инструментом, чем при работе острым. Смазочно-охлаждающие жидкости уменьшают глубину и степень упрочнения.

При некоторых условиях резания на передней поверхности режущей кромки резца налипает обрабатываемый материал, образуя так называемый нарост. Он имеет клиновидную форму, по твердости превышает в 2—3 раза твердость обрабатываемого материала. Являясь как бы продолжением резца, нарост (рис. 83) изменяет его геометрические параметры (δ 1 <δ), участвует в резании металла, влияет на результаты обработки, износ резца и силы, действующие на резец.

Рис. 83. Нарост на резце :

а — величина нароста, б — угол резания

При обработке нарост периодически разрушается и вновь восстанавливается. С увеличением пластичности обрабатываемого металла размеры нароста возрастают, а при обработке хрупких металлов, например чугуна, нарост может и не образоваться.

При обработке со скоростью резания до 5 м/мин нарост не образуется, наибольшая величина нароста — при скоростях резания 10—20 м/мин. Этот диапазон скоростей является неблагоприятным для чистовой обработки. При дальнейшем увеличении скорости резания в зависимости от прочности металла температура в зоне резания возрастает и нарост, размягчаясь, постепенно исчезает.

Нарост увеличивается с увеличением подачи, поэтому при чистовой обработке рекомендуются подачи в пределах 0,1—0,2 мм/об. Глубина резания существенного влияния на размеры нароста не оказывает. Применение смазочно-охлаждающей жидкости уменьшает нарост.

Наличие нароста полезно при выполнении черновой обработки.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Все о бизнесе