Все о бизнесе

https://accounts.google.com


Подписи к слайдам:

Электронно-дырочный переход. Транзистор

Электронно-дырочный переход (или n – p -переход) – это область контакта двух полупроводников с разными типами проводимости.

При контакте двух полупроводников n - и p -типов начинается процесс диффузии: дырки из p -области переходят в n -область, а электроны, наоборот, из n -области в p -область. В результате в n -области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p -области уменьшается концентрация дырок и возникает отрицательно заряженный слой. На границе полупроводников образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу.

Пограничная область раздела полупроводников с разными типами проводимости (запирающий слой) обычно достигает толщины порядка десятков и сотен межатомных расстояний. Объемные заряды этого слоя создают между p- и n-областями запирающее напряжение U з, приблизительно равное 0,35 В для германиевых n–p-переходов и 0,6 В для кремниевых.

В условиях теплового равновесия при отсутствии внешнего электрического напряжения полная сила тока через электронно-дырочный переход равна нулю.

Если n – p -переход соединить с источником так, чтобы положительный полюс источника был соединен с p -областью, а отрицательный с n -областью, то напряженность электрического поля в запирающем слое будет уменьшаться, что облегчает переход основных носителей через контактный слой. Дырки из p -области и электроны из n -области, двигаясь навстречу друг другу, будут пересекать n – p -переход, создавая ток в прямом направлении. Сила тока через n – p -переход в этом случае будет возрастать при увеличении напряжения источника.

Если полупроводник с n – p -переходом подключен к источнику тока так, что положительный полюс источника соединен с n -областью, а отрицательный – с p -областью, то напряженность поля в запирающем слое возрастает. Дырки в p -области и электроны в n -области будут смещаться от n – p -перехода, увеличивая тем самым концентрации неосновных носителей в запирающем слое. Ток через n – p -переход практически не идет. Весьма незначительный обратный ток обусловлен только собственной проводимостью полупроводниковых материалов, т. е. наличием небольшой концентрации свободных электронов в p -области и дырок в n -области. Напряжение, поданное на n – p -переход в этом случае называют обратным.

Способность n – p -перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами. Полупроводниковые диоды изготавливаются из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости. Полупроводниковые диоды обладают многими преимуществами по сравнению с вакуумными диодами – малые размеры, длительный срок службы, механическая прочность. Существенным недостатком полупроводниковых диодов является зависимость их параметров от температуры. Кремниевые диоды, например, могут удовлетворительно работать только в диапозоне температур от –70 °C до 80 °C. У германиевых диодов диапазон рабочих температур несколько шире.

Полупроводниковые приборы не с одним, а с двумя n – p -переходами называются транзисторами. Название происходит от сочетания английских слов: transfer – переносить и resistor – сопротивление. Обычно для создания транзисторов используют германий и кремний. Транзисторы бывают двух типов: p – n – p -транзисторы и n – p – n -транзисторы.

Германиевый транзистор p – n – p -типа представляет собой небольшую пластинку из германия с донорной примесью, т. е. из полупроводника n -типа. В этой пластинке создаются две области с акцепторной примесью, т. е. области с дырочной проводимостью.

В транзисторе n – p – n -типа основная германиевая пластинка обладает проводимостью p -типа, а созданные на ней две области – проводимостью n -типа.

Пластинку транзистора называют базой (Б), одну из областей с противоположным типом проводимости – коллектором (К), а вторую – эмиттером (Э). Обычно объем коллектора превышает объем эмиттера.

В условных обозначениях разных структур стрелка эмиттера показывает направление тока через транзистор.

Включение в цепь транзистора p – n – p -структуры Переход «эмиттер–база» включается в прямом (пропускном) направлении (цепь эмиттера), а переход «коллектор–база» – в запирающем направлении (цепь коллектора).

При замыкании цепи эмиттера дырки – основные носители заряда в эмиттере – переходят из него в базу, создавая в этой цепи ток I э. Но для дырок, попавших в базу из эмиттера, n – p -переход в цепи коллектора открыт. Большая часть дырок захватывается полем этого перехода и проникает в коллектор, создавая ток I к.

Для того, чтобы ток коллектора был практически равен току эмиттера, базу транзистора делают в виде очень тонкого слоя. При изменении тока в цепи эмиттера изменяется сила тока и в цепи коллектора.

Если в цепь эмиттера включен источник переменного напряжения, то на резисторе R , включенном в цепь коллектора, также возникает переменное напряжение, амплитуда которого может во много раз превышать амплитуду входного сигнала. Следовательно, транзистор выполняет роль усилителя переменного напряжения.

Однако, такая схема усилителя на транзисторе является неэффективной, так как в ней отсутствует усиление сигнала по току, и через источники входного сигнала протекает весь ток эмиттера I э. В реальных схемах усилителей на транзисторах источник переменного напряжения включают так, чтобы через него протекал только небольшой ток базы I б = I э – I к. Малые изменения тока базы вызывают значительные изменения тока коллектора. Усиление по току в таких схемах может составлять несколько сотен.

В настоящее время полупроводниковые приборы находят исключительно широкое применение в радиоэлектронике. Современная технология позволяет производить полупроводниковые приборы – диоды, транзисторы, полупроводниковые фотоприемники и т. д. – размером в несколько микрометров. Качественно новым этапом электронной техники явилось развитие микроэлектроники, которая занимается разработкой интегральных микросхем и принципов их применения.

Интегральной микросхемой называют совокупность большого числа взаимосвязанных элементов – сверхмалых диодов, транзисторов, конденсаторов, резисторов, соединительных проводов, изготовленных в едином технологическом процессе на одном кристалле. Микросхема размером в 1 см 2 может содержать несколько сотен тысяч микроэлементов. Применение микросхем привело к революционным изменениям во многих областях современной электронной техники. Это особенно ярко проявилось в области электронной вычислительной техники. На смену громоздким ЭВМ, содержащим десятки тысяч электронных ламп и занимавшим целые здания, пришли персональные компьютеры.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него:










1 из 9

Презентация на тему: полупроводниковые приборы

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборы Полупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом м) занимают промежуточное место между проводниками и диэлектриками. Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборы Полупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом м) занимают промежуточное место между проводниками и диэлектриками.

№ слайда 3

Описание слайда:

№ слайда 4

Описание слайда:

Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Полупроводниковыми приборами называются приборы, действие которых основано на использовании свойств полупроводниковых материалов.

№ слайда 5

Описание слайда:

Полупроводниковые диоды Это полупроводниковый прибор с одним p-n-переходом и двумя выводами, работа которого основана на свойствах p-n - перехода. Основным свойством p-n – перехода является односторонняя проводимость – ток протекает только в одну сторону. Условно-графическое обозначение (УГО) диода имеет форму стрелки, которая и указывает направление протекания тока через прибор. Конструктивно диод состоит из p-n-перехода, заключенного в корпус (за исключением микромодульных бескорпусных) и двух выводов: от p-области – анод, от n-области – катод. Т.е. диод – это полупроводниковый прибор, пропускающий ток только в одном направлении – от анода к катоду. Зависимость тока через прибор от приложенного напряжения называется вольт-амперной характеристикой (ВАХ) прибора I=f(U).

№ слайда 6

Описание слайда:

Транзисторы Транзистор - это полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов, а также коммутации электрических цепей. Отличительной особенностью транзистора является способность усиливать напряжение и ток - действующие на входе транзистора напряжения и токи приводят к появлению на его выходе напряжений и токов значительно большей величины. Свое название транзистор получил от сокращения двух английских слов tran(sfer) (re)sistor - управляемый резистор. Транзистор позволяет регулировать ток в цепи от нуля до максимального значения.

№ слайда 7

Описание слайда:

Классификация транзисторов: Классификация транзисторов: - по принципу действия: полевые (униполярные), биполярные, комбинированные. - по значению рассеиваемой мощности: малой, средней и большой. - по значению предельной частоты: низко-, средне-, высоко- и сверхвысокочастотные. - по значению рабочего напряжения: низко- и высоковольтные. - по функциональному назначению: универсальные, усилительные, ключевые и др. - по конструктивному исполнению: бескорпусные и в корпусном исполнении, с жесткими и гибкими выводами.

№ слайда 8

Описание слайда:

В зависимости от выполняемых функций транзисторы могут работать в трех режимах: В зависимости от выполняемых функций транзисторы могут работать в трех режимах: 1) Активный режим - используется для усиления электрических сигналов в аналоговых устройствах. Сопротивление транзистора изменяется от нуля до максимального значения - говорят транзистор «приоткрывается» или «подзакрывается». 2) Режим насыщения - сопротивление транзистора стремится к нулю. При этом транзистор эквивалентен замкнутому контакту реле. 3) Режим отсечки - транзистор закрыт и обладает высоким сопротивлением, т.е. он эквивалентен разомкнутому контакту реле. Режимы насыщения и отсечки используются в цифровых, импульсных и коммутационных схемах.

№ слайда 9

Описание слайда:

Индикатор Электрóнный индикáтор - это электронное показывающее устройство, предназначенное для визуального контроля за событиями, процессами и сигналами. Электронные индикаторы устанавливается в различное бытовое и промышленное оборудование для информирования человека об уровне или значении различных параметров, например, напряжения, тока, температуры, заряде батареи и т.д. Часто электронным индикатором ошибочно называют механический индикатор с электронной шкалой.

Подобные документы

    Вольтамперная характеристика диода, его выпрямительные свойства, характеризуемые отношением обратного сопротивления к прямому. Основные параметры стабилитрона. Отличительная особенность туннельного диода. Использование светодиода в качестве индикатора.

    лекция, добавлен 04.10.2013

    Выпрямительные диоды Шоттки. Время перезарядки барьерной ёмкости перехода и сопротивление базы диода. ВАХ кремниевого диода Шоттки 2Д219 при разных температурах. Импульсные диоды. Номенклатура составных частей дискретных полупроводниковых приборов.

    реферат, добавлен 20.06.2011

    Принципиальные достоинства оптоэлектронных приборов и устройств. Основная задача и материалы фотоприемников. Механизмы генерации неосновных носителей в области пространственного заряда. Дискретные МПД-фотоприемники (металл - диэлектрик - полупроводник).

    реферат, добавлен 06.12.2017

    Общие сведения о полупроводниках. Приборы, действие которых основано на использовании свойств полупроводников. Характеристика и параметры выпрямительных диодов. Параметры и предназначение стабилитронов. Вольтамперная характеристика туннельного диода.

    реферат, добавлен 24.04.2017

    Физические основы полупроводниковой электроники. Поверхностные и контактные явления в полупроводниках. Полупроводниковые диоды и резисторы, фотоэлектрические полупроводниковые приборы. Биполярные и полевые транзисторы. Аналоговые интегральные микросхемы.

    учебное пособие, добавлен 06.09.2017

    Выпрямительные диоды. Эксплуатационные параметры диода. Эквивалентная схема выпрямительного диода для работы на сверхвысоких частотах. Импульсные диоды. Стабилитроны (опорные диоды). Основные параметры и вольт-амперная характеристика стабилитрона.

    Электропроводность полупроводников, действие полупроводниковых приборов. Рекомбинация электронов и дырок в полупроводнике и их роль в установлении равновесных концентраций. Нелинейные полупроводниковые резисторы. Верхние разрешенные энергетические зоны.

    лекция, добавлен 04.10.2013

    Вольт-амперная характеристика туннельного диода. Описания варикапа, в котором используется емкость p-n-перехода. Исследование режимов работы фотодиода. Светоизлучающие диоды - преобразователи энергии электрического тока в энергию оптического излучения.

    презентация, добавлен 20.07.2013

    Определение величины сопротивления ограничительного резистора. Расчет напряжения холостого хода перехода диода. Температурная зависимость удельной проводимости примесного полупроводника. Рассмотрение структуры и принципа работы диодного тиристора.

    контрольная работа, добавлен 26.09.2017

    Группы полупроводниковых резисторов. Варисторы, нелинейность вольт. Фоторезисторы – полупроводниковые приборы, изменяющие своё сопротивление под действием светового потока. Максимальная спектральная чувствительность. Плоскостные полупроводниковые диоды.


Полупроводниковый диод – это нелинейный электронный прибор с двумя выводами. В зависимости от внутренней структуры, типа, количества и уровня легирования внутренних элементов диода и вольт-амперной характеристики свойства полупроводниковых диодов бывают различными.




Выпрямительный диод на основе p-n перехода Основу выпрямительного диода составляет обычный электронно дырочный переход, вольт-амперная характеристика такого диода имеет ярко выраженную нелинейность. В прямом смещении ток диода инжекционный, большой по величине и представляет собой диффузионную компоненту тока основных носителей. При обратном смещении ток диода маленький по величине и представляет собой дрейфовую компоненту тока неосновных носителей. В состоянии равновесия суммарный ток, обусловленный диффузионными и дрейфовыми токами электронов и дырок, равен нулю. Рис. Параметры полупроводникового диода: а) вольт-амперная характеристика; б) конструкция корпуса ВАХ описывается уравнением


Выпрямление в диоде Одним из главных свойств полупроводникового диода на основе p-n перехода является резкая асимметрия вольт-амперной характеристики: высокая проводимость при прямом смещении и низкая при обратном. Это свойство диода используется в выпрямительных диодах. На рисунке приведена схема, иллюстрирующая выпрямление переменного тока в диоде. - Коэффициент выпрямления идеального диода на основе p-n перехода.


Характеристическое сопротивление Различают два вида характеристического сопротивления диодов: дифференциальное сопротивление rD и сопротивление по постоянному току RD. Дифференциальное сопротивление определяется как Сопротивление по постоянному току На прямом участке вольт-амперной характеристики сопротивление по постоянному току больше, чем дифференциальное сопротивление RD > rD, а на обратном участке – меньше RD rD, а на обратном участке – меньше RD


Стабилитроны Стабилитрон - это полупроводниковый диод, вольт амперная характеристика которого имеет область резкой зависимости тока от напряжения на обратном участке вольт амперной характеристики. ВАХ стабилитрона имеет вид, представленный на рисунке При достижении напряжения на стабилитроне, называемого напряжением стабилизации Uстаб, ток через стабилитрон резко возрастает. Дифференциальное сопротивление Rдиф идеального стабилитрона на этом участке ВАХ стремится к 0, в реальных приборах величина Rдиф составляет значение: Rдиф 2 50 Ом.


Основное назначение стабилитрона – стабилизация напряжения на нагрузке, при изменяющемся напряжении во внешней цепи. В связи с этим последовательно со стабилитроном включают нагрузочное сопротивление, демпфирующее изменение внешнего напряжения. Поэтому стабилитрон называют также опорным диодом. Напряжение стабилизации Uстаб зависит от физического механизма, обуславливающего резкую зависимость тока от напряжения. Различают два физических механизма, ответственных за такую зависимость тока от напряжения, – лавинный и туннельный пробой p n перехода. Для стабилитронов с туннельным механизмом пробоя напряжение стабилизации Uстаб невелико и составляет величину менее 5 вольт: Uстаб 8 В.


Варикапы Варикап полупроводниковый диод, работа которого основана на зависимости барьерной ёмкости p-n перехода от обратного напряжения. Варикапы применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др. При отсутствии внешнего напряжения в p-n-переходе существуют потенциальный барьер и внутреннее электрическое поле. Если к диоду приложить обратное напряжение, то высота этого потенциального барьера увеличится. Внешнее обратное напряжение отталкивает электроны в глубь n- области, в результате чего происходит расширение обеднённой области p-n перехода, которую можно представить как простейший плоский конденсатор, в котором обкладками служат границы области. В таком случае, в соответствии с формулой для ёмкости плоского конденсатора, с ростом расстояния между обкладками (вызванной ростом значения обратного напряжения) ёмкость p-n-перехода будет уменьшаться. Это уменьшение ограничено лишь толщиной базы, далее которой переход расширяться не может. По достижении этого минимума с ростом обратного напряжения ёмкость не изменяется.




В полупроводнике n+ типа все состояния в зоне проводимости вплоть до уровня Ферми заняты электронами, а в полупроводнике p+ типа – дырками. Зонная диаграмма p+ n+ перехода, образованного двумя вырожденными полупроводниками: Рассчитаем, чему равна геометрическая ширина вырожденного p n перехода. Будем считать, что при этом сохраняется несимметричность p n перехода (p+ – более сильнолегированная область). Тогда ширина p+ n+ перехода мала: Дебройлевскую длину волны электрона оценим из простых соотношений:


Таким образом, геометрическая ширина p+ n+ перехода оказывается сравнима с дебройлевской длиной волны электрона. В этом случае в вырожденном p+ n+ переходе можно ожидать проявления квантово- механических эффектов, одним из которых является туннелирование через потенциальный барьер. При узком барьере вероятность туннельного просачивания через барьер отлична от нуля. Обращенный диод – это туннельный диод без участка с отрицательным дифференциальным сопротивлением. Высокая нелинейность вольт- амперной характеристики при малых напряжениях вблизи нуля (порядка микровольт) позволяет использовать этот диод для детектирования слабых сигналов в СВЧ диапазоне. Вольт амперная характеристика германиевого обращенного диода а) полная ВАХ; б) обратный участок ВАХ при разных температурах


стабилитрона
7

Стабилизатор напряжения на основе стабилитрона и ВАХ стабилитронов 1-КС133А, 2-КС156А,3-КС182Ж, 4-КС212Ж

Стабилизатор напряжения на основе
стабилитрона и ВАХ стабилитронов 1-КС133А, 2КС156А,3-КС182Ж, 4-КС212Ж
Степанов Константин Сергеевич

Вольтамперные характеристики
1- КС133А, 2-КС156А, 3-КС182Ж, 4-КС212Ж
9
Степанов Константин Сергеевич

Варикап: обозначение и его вах
Максимальная емкость варикапа
составляет 5-300 пФ
10
Степанов Константин Сергеевич

Степанов Константин Сергеевич

ПРИМЕНЕНИЕ ДИОДОВ

В электротехнике:
1) выпрямительные устройства,
2) защитные устройства.
Степанов Константин Сергеевич

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Работа однополупериодного выпрямителя

Напряжение на выходе выпрямителя


u (t) = u (t) - u (t),
В виде среднего значения –
U = Um/π,


нагр
входа
нагр
Степанов Константин Сергеевич
диода

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Однофазный двухполупериодный выпрямитель
со средней точкой
Степанов Константин Сергеевич

Однофазный двухполупериодный выпрямитель со средней точкой

Степанов Константин Сергеевич

Работа двухполупериодного выпрямителя


также определяется по второму закону
Кирхгофа:
В виде мгновенного значения –
u (t)= u (t) - u (t),
В виде действующего значения –
U = 2Um/π
нагр
входа
нагр
Степанов Константин Сергеевич
диода

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Степанов Константин Сергеевич

Однофазный мостовой выпрямитель

Степанов Константин Сергеевич

Работа двухполупериодного мостового выпрямителя

В этой схеме напряжение на выходе
определяется по второму закону Кирхгофа:
В виде мгновенного значения –
u (t)= u (t) - 2u (t),
В виде действующего значения –
U = 2Um/π,
при игнорировании падения напряжения на
диодах в виду их малой величины.
нагр
входа
нагр
Степанов Константин Сергеевич
диода

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Степанов Константин Сергеевич

Частота пульсаций
f1п = 3 fс
Степанов Константин Сергеевич

СХЕМЫ ВЫПРЯМИТЕЛЕЙ

Степанов Константин Сергеевич

Трехфазная мостовая схема управления

Постоянная составляющая в этой схеме
достаточно велика
m
, тогда Ud 0 =0,955Uл m ,
U 2 U Sin
d0
2
m
где: U2 – действующее значение линейного
напряжения на входе выпрямителя,
m – число фаз выпрямителя.
Uл m - амплитудное значение линейного
напряжения
Амплитуды пульсаций гармоник – малы,
а частота пульсаций их велика
Um1 = 0,055Uл m (частота f1п = 6 fс)
Um2 = 0,013Uл m (частота f2п = 12 fс)
Степанов Константин Сергеевич

СЕТЕВЫЕ ФИЛЬТРЫ

Емкостные (С – фильтры)
Индуктивные (L – фильтры)
LC - фильтры
Степанов Константин Сергеевич

Емкостной (С – фильтр)

Степанов Константин Сергеевич

Емкостной (С – фильтр)

Степанов Константин Сергеевич

Емкостной (С – фильтр)

Степанов Константин Сергеевич

Индуктивный (L – фильтр)

Степанов Константин Сергеевич

Индуктивный (L – фильтр)

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Биполярные транзисторы
Биполярным транзистором
называется полупроводниковый
прибор с двумя p-n-переходами.
Он имеет трехслойную структуру
n-p-n или p-n-p-типа
33
Степанов Константин Сергеевич

Структура и обозначение
биполярного транзистора
34
Степанов Константин Сергеевич

Степанов Константин Сергеевич

Структура биполярного транзистора

Степанов Константин Сергеевич

Режимы работы транзистора
Различают следующие режимы транзистора:
1)режим отсечки токов (режим закрытого
транзистора), когда оба перехода смещены в
обратном направлении (закрыты); 2)режим
насыщения (режим открытого транзистора) ,
когда оба перехода смещены в прямом
направлении, токи в транзисторах максимальны и
не зависят от его параметров: 3)активный режим,
когда эмиттерный переход смещен в прямом
направлении, коллекторный - в обратном.
37
Степанов Константин Сергеевич

Схема с общей базой

Степанов Константин Сергеевич

Схема с общей базой и её ВАХ
39
Степанов Константин Сергеевич

Схема с общим эмиттером (ОЭ)

Степанов Константин Сергеевич

Схема с общим коллектором (ОК)

Степанов Константин Сергеевич

Схема с ОЭ(а), её ВАХ и схема с ОК(б)

Степанов Константин Сергеевич

Характеристики и эквивалентные схемы транзисторов

Степанов Константин Сергеевич

Схема с общим эмиттером

Степанов Константин Сергеевич

Осциллограммы на входе и выходе усилителя с ОЭ

Степанов Константин Сергеевич

Схема с общим эмиттером

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Тиристоры

Многослойные структуры с тремя p-nпереходами называют тиристорами.
Тиристоры с двумя выводами
(двухэлектродные) называются
динисторами,
с тремя (трехэлектродные) -
тринисторами.
Степанов Константин Сергеевич

Свойства тиристоров

Основным свойством является
способность находиться в двух
состояниях устойчивого равновесия:
максимально открытом, и
максимально закрытом.
Степанов Константин Сергеевич

Свойства тиристоров

Включать тиристоры можно
импульсами малой мощности по цепи
управления.
Выключать – сменой полярности
напряжения силовой цепи или
уменьшением анодного тока до
значения ниже тока удержания.
Степанов Константин Сергеевич

Применение тиристоров

По этой причине тиристоры относят к
классу переключающих
полупроводниковых приборов, главным
применением которых является
бесконтактная коммутация
электрических цепей.
Степанов Константин Сергеевич

Структура, обозначение и ВАХ динистора.

Степанов Константин Сергеевич

При прямом включении динистора источник
питания En смещает p-n-переходы П1 и П3 в
прямом направлении, а П2 - в обратном,
динистор находится в закрытом состоянии и
все приложенное к нему напряжение падает
на переходе П2. Ток прибора определяется
током утечки Iут, значение которого
находится в пределах от сотых долей
микроампера до нескольких микроампер
(участок ОА). Дифференциальное
u
сопротивление динистора Rдиф = l на участке
ОА положительно и достаточно велико. Его
значение может достигать нескольких сотен
мегаом. На участке АБ Rдиф <0 Условное
обозначение динистора показано на рис.б.
Степанов Константин Сергеевич

Структура тиристора

Степанов Константин Сергеевич

Обозначение тиристора

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Степанов Константин Сергеевич

Условия включения тиристора

1. Прямое напряжение на тиристоре
(анод + , катод -).
2. Импульс управления, открывающий
тиристор, должен быть достаточной
мощности.
3. Сопротивление нагрузки должно
быть меньше критического
(Rкр = Uмакс/Iуд).
Степанов Константин Сергеевич

Полевые транзисторы
60
Степанов Константин Сергеевич

Полевые (униполярные) транзисторы

Степанов Константин Сергеевич

Полевой транзистор с изолированным затвором

Степанов Константин Сергеевич

ОБРАТНЫЕ СВЯЗИ Подготовлено Степановым К.С.

Степанов Константин Сергеевич

ОБРАТНЫЕ СВЯЗИ

Воздействие причины на следствие,
вызвавшее эту причину, называется
обратной связью.
Обратная связь, усиливающая

положительной (ПОС).
Обратная связь, ослабляющая
воздействие следствия, называется
отрицательной (ООС).
Степанов Константин Сергеевич

ОБРАТНЫЕ СВЯЗИ структурная схема ОС

Степанов Константин Сергеевич

Последовательная ОС по току

Степанов Константин Сергеевич

Последовательная ОС по току

Коэффициент передачи усилителя в
U вых
направлении стрелки
K
U вх
Коэффициент передачи обратной
связи в направлении стрелки
U ос
U вых
Степанов Константин Сергеевич

Последовательная ОС по току

β показывает какая часть выходного
напряжения передаётся на вход.
Обычно
1
U вх U вх U ос U вх U вых
U вых KU вх K (U вх U вых)
Степанов Константин Сергеевич

Последовательная ОС по току

Следовательно
Тогда
K
K
1 K
U вых
K
K KK
U вх
U ос
U вых Z н
K
1

K
1 K
Степанов Константин Сергеевич

Последовательная ОС по току

Входное сопротивление
Так как в схеме
Тогда
Z вх (1 K) Z вх
U ос (I вых I вх)
U вх U вх (I вых I вх)
Z вх Z вх (1 K I)
Z вых (1 K в)
Z вых
Степанов Константин Сергеевич

Последовательная ОС по току

Где KI - коэффициент усиления тока. Он
должен быть меньше нуля, т.е. усилитель
должен быть инвертирующий.
K в Zвх * Kв /(Rг Zвх)
При ООС K в <0
Применяется тогда, когда нужно иметь
большое Zвых. Тогда такой усилитель
эквивалентен генератору тока. При
глубокой ООС справедливо
>>Zвых
Z вых
Степанов Константин Сергеевич

Степанов Константин Сергеевич

Последовательная ОС по напряжению

Последовательная ОС
напряжению
по
Увеличивает входное и уменьшает
выходное сопротивление
Z вых
Z вых
1 K в
Z вх
Rг Z вх
где Кв – коэффициент передачи
усилителя в режиме холостого хода
Эмиттерный повторитель – яркий
пример Последовательной ООС по
напряжению
Степанов Константин Сергеевич

Параллельная ООС по току

Параллельная
Степанов Константин Сергеевич
ООС по току

Параллельная ООС понапряжению

Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ Подготовлено Степановым К.С.

Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Логические элементы - устройства,
предназначенные для обработки
информации в цифровой форме
(последовательности сигналов высокого -
«1» и низкого - «0» уровней в двоичной
логике, последовательность "0", "1" и "2" в
троичной логике, последовательности "0",
"1", "2", "3", "4", "5", "6", "7", "8"и "9" в
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Физически, логические элементы
могут быть выполнены
механическими,
электромеханическими (на
электромагнитных реле),
электронными (на диодах и
транзисторах), пневматическими,
гидравлическими, оптическими и др.
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

После доказательства в 1946 г. теоремы
Джона фон Неймана о экономичности
показательных позиционных систем
счисления стало известно о
преимуществах двоичной и троичной
систем счисления по сравнению с
десятичной системой счисления.
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Двоичность и троичность позволяет
значительно сократить количество
операций и элементов, выполняющих
эту обработку, по сравнению с
десятичными логическими элементами.
Логические элементы выполняют
логическую функцию (операцию) с
входными сигналами (операндами,
данными).
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Логические операции с одним
операндом называются унарными, с
двумя - бинарными, с тремя -
тернарными (триарными,
тринарными) и т. д.
Степанов Константин Сергеевич

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Из возможных унарных операций с
унарным выходом интерес для
реализации представляют операции
отрицания и повторения, причём,
операция отрицания имеет большую
значимость, чем операция повторения, Степанов Константин СергеевичA Мнемоническое правило Для эквивалентности с любым

На выходе будет:

действует четное количество «1»,

действует нечетное количество «1»,
Степанов Константин Сергеевич

Сложение по модулю 2 (2Исключающее_ИЛИ, неравнозначность). Инверсия равнозначности.

A
Степанов Константин Сергеевич
0
0
1
1
B
0
1
0
1
f(AB)
0
1
1
0

Мнемоническое правило

Для суммы по модулю 2 с любым
количеством входов звучит так:
На выходе будет:
"1" тогда и только тогда, когда на входа
действует нечётное количество «1»,
"0" тогда и только тогда, когда на входа
действует чётное количество «1»,
Степанов Константин Сергеевич

Благодарю за внимание
Степанов Константин Сергеевич

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Все о бизнесе